多分辨率协同设计建模:片上网络模型

Soroosh Gholami, H. Sarjoughian
{"title":"多分辨率协同设计建模:片上网络模型","authors":"Soroosh Gholami, H. Sarjoughian","doi":"10.1109/WSC.2016.7822201","DOIUrl":null,"url":null,"abstract":"This paper proposes a multi-resolution co-design modeling approach where hardware and software parts of systems are loosely represented and composable. This approach is shown for Network-on-Chips (NoC) where the network software directs communications among switches, links, and interfaces. The complexity of such systems can be better tamed by modeling frameworks for which multi-resolution model abstractions along system's hardware and software dimensions are separately specified. Such frameworks build on hierarchical, component-based modeling principles and methods. Hybrid model composition establishes relationships across models while multi-resolution models can be better specified by separately accounting for multiple levels of hardware and software abstractions. For Network-on-Chip, the abstraction levels are interface, capacity, flit, and hardware with resolutions defined in terms of object, temporal, process, and spatial aspects. The proposed modeling approach benefits from co-design and multi-resolution modeling in order to better manage rich dynamics of hardware and software parts of systems and their network-based interactions.","PeriodicalId":367269,"journal":{"name":"2016 Winter Simulation Conference (WSC)","volume":"8 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-12-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Multi-resolution co-design modeling: A Network-on-Chip model\",\"authors\":\"Soroosh Gholami, H. Sarjoughian\",\"doi\":\"10.1109/WSC.2016.7822201\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper proposes a multi-resolution co-design modeling approach where hardware and software parts of systems are loosely represented and composable. This approach is shown for Network-on-Chips (NoC) where the network software directs communications among switches, links, and interfaces. The complexity of such systems can be better tamed by modeling frameworks for which multi-resolution model abstractions along system's hardware and software dimensions are separately specified. Such frameworks build on hierarchical, component-based modeling principles and methods. Hybrid model composition establishes relationships across models while multi-resolution models can be better specified by separately accounting for multiple levels of hardware and software abstractions. For Network-on-Chip, the abstraction levels are interface, capacity, flit, and hardware with resolutions defined in terms of object, temporal, process, and spatial aspects. The proposed modeling approach benefits from co-design and multi-resolution modeling in order to better manage rich dynamics of hardware and software parts of systems and their network-based interactions.\",\"PeriodicalId\":367269,\"journal\":{\"name\":\"2016 Winter Simulation Conference (WSC)\",\"volume\":\"8 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-12-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 Winter Simulation Conference (WSC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/WSC.2016.7822201\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 Winter Simulation Conference (WSC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WSC.2016.7822201","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

本文提出了一种多分辨率协同设计建模方法,其中系统的硬件和软件部分是松散表示和可组合的。这种方法用于片上网络(NoC),其中网络软件指导交换机、链路和接口之间的通信。这样的系统的复杂性可以通过建模框架得到更好的控制,在这些框架中,沿着系统的硬件和软件维度分别指定了多分辨率模型抽象。这些框架建立在分层的、基于组件的建模原则和方法之上。混合模型组合建立了模型之间的关系,而多分辨率模型可以通过单独考虑多个硬件和软件抽象级别来更好地指定。对于片上网络,抽象层是接口、容量、运行和硬件,其分辨率是根据对象、时间、进程和空间方面定义的。该建模方法得益于协同设计和多分辨率建模,可以更好地管理系统硬件和软件部分的丰富动态特性及其基于网络的交互。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Multi-resolution co-design modeling: A Network-on-Chip model
This paper proposes a multi-resolution co-design modeling approach where hardware and software parts of systems are loosely represented and composable. This approach is shown for Network-on-Chips (NoC) where the network software directs communications among switches, links, and interfaces. The complexity of such systems can be better tamed by modeling frameworks for which multi-resolution model abstractions along system's hardware and software dimensions are separately specified. Such frameworks build on hierarchical, component-based modeling principles and methods. Hybrid model composition establishes relationships across models while multi-resolution models can be better specified by separately accounting for multiple levels of hardware and software abstractions. For Network-on-Chip, the abstraction levels are interface, capacity, flit, and hardware with resolutions defined in terms of object, temporal, process, and spatial aspects. The proposed modeling approach benefits from co-design and multi-resolution modeling in order to better manage rich dynamics of hardware and software parts of systems and their network-based interactions.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信