{"title":"核机分类的通用嵌入","authors":"P. Boufounos, H. Mansour","doi":"10.1109/SAMPTA.2015.7148902","DOIUrl":null,"url":null,"abstract":"Visual inference over a transmission channel is increasingly becoming an important problem in a variety of applications. In such applications, low latency and bit-rate consumption are often critical performance metrics, making data compression necessary. In this paper, we examine feature compression for support vector machine (SVM)-based inference using quantized randomized embeddings. We demonstrate that embedding the features is equivalent to using the SVM kernel trick with a mapping to a lower dimensional space. Furthermore, we show that universal embeddings-a recently proposed quantized embedding design-approximate a radial basis function (RBF) kernel, commonly used for kernel-based inference. Our experimental results demonstrate that quantized embeddings achieve 50% rate reduction, while maintaining the same inference performance. Moreover, universal embeddings achieve a further reduction in bit-rate over conventional quantized embedding methods, validating the theoretical predictions.","PeriodicalId":311830,"journal":{"name":"2015 International Conference on Sampling Theory and Applications (SampTA)","volume":"27 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-05-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Universal embeddings for kernel machine classification\",\"authors\":\"P. Boufounos, H. Mansour\",\"doi\":\"10.1109/SAMPTA.2015.7148902\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Visual inference over a transmission channel is increasingly becoming an important problem in a variety of applications. In such applications, low latency and bit-rate consumption are often critical performance metrics, making data compression necessary. In this paper, we examine feature compression for support vector machine (SVM)-based inference using quantized randomized embeddings. We demonstrate that embedding the features is equivalent to using the SVM kernel trick with a mapping to a lower dimensional space. Furthermore, we show that universal embeddings-a recently proposed quantized embedding design-approximate a radial basis function (RBF) kernel, commonly used for kernel-based inference. Our experimental results demonstrate that quantized embeddings achieve 50% rate reduction, while maintaining the same inference performance. Moreover, universal embeddings achieve a further reduction in bit-rate over conventional quantized embedding methods, validating the theoretical predictions.\",\"PeriodicalId\":311830,\"journal\":{\"name\":\"2015 International Conference on Sampling Theory and Applications (SampTA)\",\"volume\":\"27 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-05-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 International Conference on Sampling Theory and Applications (SampTA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SAMPTA.2015.7148902\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 International Conference on Sampling Theory and Applications (SampTA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SAMPTA.2015.7148902","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Universal embeddings for kernel machine classification
Visual inference over a transmission channel is increasingly becoming an important problem in a variety of applications. In such applications, low latency and bit-rate consumption are often critical performance metrics, making data compression necessary. In this paper, we examine feature compression for support vector machine (SVM)-based inference using quantized randomized embeddings. We demonstrate that embedding the features is equivalent to using the SVM kernel trick with a mapping to a lower dimensional space. Furthermore, we show that universal embeddings-a recently proposed quantized embedding design-approximate a radial basis function (RBF) kernel, commonly used for kernel-based inference. Our experimental results demonstrate that quantized embeddings achieve 50% rate reduction, while maintaining the same inference performance. Moreover, universal embeddings achieve a further reduction in bit-rate over conventional quantized embedding methods, validating the theoretical predictions.