面向知识的检索和查询公式的模式驱动方法

KEYS '12 Pub Date : 2012-05-20 DOI:10.1145/2254736.2254746
H. Azzam, Sirvan Yahyaei, Marco Bonzanini, T. Roelleke
{"title":"面向知识的检索和查询公式的模式驱动方法","authors":"H. Azzam, Sirvan Yahyaei, Marco Bonzanini, T. Roelleke","doi":"10.1145/2254736.2254746","DOIUrl":null,"url":null,"abstract":"In order to search across factual knowledge and content explicated using different data formats this paper leverages a generic data model (schema) that transforms keyword-based retrieval models and queries to knowledge-oriented models and semantically-expressive queries. As each of the transformed retrieval models capitalises on a specific evidence space (term, classification, relationship and attribute), we demonstrate two possible combinations of these spaces, namely macro-based or micro-based. For bare keyword-based queries we demonstrate how the data model can be used to augment the queries with classifications, relationships, etc. that reflect the underlying constraints and objects found in the heterogeneous knowledge bases. Using the IMDb benchmark the results demonstrate the feasibility and effectiveness of the instantiated retrieval models and the query reformulation process.","PeriodicalId":170987,"journal":{"name":"KEYS '12","volume":"26 2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-05-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"A schema-driven approach for knowledge-oriented retrieval and query formulation\",\"authors\":\"H. Azzam, Sirvan Yahyaei, Marco Bonzanini, T. Roelleke\",\"doi\":\"10.1145/2254736.2254746\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In order to search across factual knowledge and content explicated using different data formats this paper leverages a generic data model (schema) that transforms keyword-based retrieval models and queries to knowledge-oriented models and semantically-expressive queries. As each of the transformed retrieval models capitalises on a specific evidence space (term, classification, relationship and attribute), we demonstrate two possible combinations of these spaces, namely macro-based or micro-based. For bare keyword-based queries we demonstrate how the data model can be used to augment the queries with classifications, relationships, etc. that reflect the underlying constraints and objects found in the heterogeneous knowledge bases. Using the IMDb benchmark the results demonstrate the feasibility and effectiveness of the instantiated retrieval models and the query reformulation process.\",\"PeriodicalId\":170987,\"journal\":{\"name\":\"KEYS '12\",\"volume\":\"26 2 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-05-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"KEYS '12\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2254736.2254746\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"KEYS '12","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2254736.2254746","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

摘要

为了搜索使用不同数据格式解释的事实知识和内容,本文利用通用数据模型(模式)将基于关键字的检索模型和查询转换为面向知识的模型和语义表达查询。由于每个转换后的检索模型都利用了特定的证据空间(术语、分类、关系和属性),我们展示了这些空间的两种可能组合,即基于宏的或基于微的。对于基于关键字的查询,我们演示了如何使用数据模型来用分类、关系等来增强查询,这些查询反映了在异构知识库中发现的底层约束和对象。通过IMDb基准测试,验证了实例化检索模型和查询重构过程的可行性和有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A schema-driven approach for knowledge-oriented retrieval and query formulation
In order to search across factual knowledge and content explicated using different data formats this paper leverages a generic data model (schema) that transforms keyword-based retrieval models and queries to knowledge-oriented models and semantically-expressive queries. As each of the transformed retrieval models capitalises on a specific evidence space (term, classification, relationship and attribute), we demonstrate two possible combinations of these spaces, namely macro-based or micro-based. For bare keyword-based queries we demonstrate how the data model can be used to augment the queries with classifications, relationships, etc. that reflect the underlying constraints and objects found in the heterogeneous knowledge bases. Using the IMDb benchmark the results demonstrate the feasibility and effectiveness of the instantiated retrieval models and the query reformulation process.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信