三维网格模型的监督、几何感知分割

Keisuke Bamba, Ryutarou Ohbuchi
{"title":"三维网格模型的监督、几何感知分割","authors":"Keisuke Bamba, Ryutarou Ohbuchi","doi":"10.1109/ICMEW.2012.16","DOIUrl":null,"url":null,"abstract":"Segmentation of 3D model models has applications, e.g., in mesh editing and 3D model retrieval. Unsupervised, automatic segmentation of 3D models can be useful. However, some applications require user-guided, interactive segmentation that captures user intention. This paper presents a supervised, local-geometry aware segmentation algorithm for 3D mesh models. The algorithm segments manifold meshes based on interactive guidance from users. The method casts user-guided mesh segmentation as a semi-supervised learning problem that propagates segmentation labels given to a subset of faces to the unlabeled faces of a 3D model. The proposed algorithm employs Zhou's Manifold Ranking [18] algorithm, which takes both local and global consistency in high-dimensional feature space for the label propagation. Evaluation using a 3D model segmentation benchmark dataset has shown that the method is effective, although achieving interactivity for a large and complex mesh requires some work.","PeriodicalId":385797,"journal":{"name":"2012 IEEE International Conference on Multimedia and Expo Workshops","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-07-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Supervised, Geometry-Aware Segmentation of 3D Mesh Models\",\"authors\":\"Keisuke Bamba, Ryutarou Ohbuchi\",\"doi\":\"10.1109/ICMEW.2012.16\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Segmentation of 3D model models has applications, e.g., in mesh editing and 3D model retrieval. Unsupervised, automatic segmentation of 3D models can be useful. However, some applications require user-guided, interactive segmentation that captures user intention. This paper presents a supervised, local-geometry aware segmentation algorithm for 3D mesh models. The algorithm segments manifold meshes based on interactive guidance from users. The method casts user-guided mesh segmentation as a semi-supervised learning problem that propagates segmentation labels given to a subset of faces to the unlabeled faces of a 3D model. The proposed algorithm employs Zhou's Manifold Ranking [18] algorithm, which takes both local and global consistency in high-dimensional feature space for the label propagation. Evaluation using a 3D model segmentation benchmark dataset has shown that the method is effective, although achieving interactivity for a large and complex mesh requires some work.\",\"PeriodicalId\":385797,\"journal\":{\"name\":\"2012 IEEE International Conference on Multimedia and Expo Workshops\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-07-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2012 IEEE International Conference on Multimedia and Expo Workshops\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICMEW.2012.16\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 IEEE International Conference on Multimedia and Expo Workshops","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICMEW.2012.16","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

三维模型的分割在网格编辑和三维模型检索等方面具有广泛的应用。对3D模型进行无监督的自动分割是很有用的。然而,一些应用程序需要以用户为导向的交互式分段,以捕获用户意图。提出了一种监督的、局部几何感知的三维网格模型分割算法。该算法基于用户的交互式引导对流形网格进行分割。该方法将用户引导的网格分割作为一个半监督学习问题,将给定的人脸子集的分割标签传播到3D模型的未标记人脸。该算法采用了Zhou的流形排序算法[18],该算法在高维特征空间中同时考虑了标签传播的局部一致性和全局一致性。使用3D模型分割基准数据集的评估表明,该方法是有效的,尽管实现大型复杂网格的交互性需要一些工作。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Supervised, Geometry-Aware Segmentation of 3D Mesh Models
Segmentation of 3D model models has applications, e.g., in mesh editing and 3D model retrieval. Unsupervised, automatic segmentation of 3D models can be useful. However, some applications require user-guided, interactive segmentation that captures user intention. This paper presents a supervised, local-geometry aware segmentation algorithm for 3D mesh models. The algorithm segments manifold meshes based on interactive guidance from users. The method casts user-guided mesh segmentation as a semi-supervised learning problem that propagates segmentation labels given to a subset of faces to the unlabeled faces of a 3D model. The proposed algorithm employs Zhou's Manifold Ranking [18] algorithm, which takes both local and global consistency in high-dimensional feature space for the label propagation. Evaluation using a 3D model segmentation benchmark dataset has shown that the method is effective, although achieving interactivity for a large and complex mesh requires some work.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信