有界次优搜索中学习启发式算法的避免错误

M. Greco, Jorge A. Baier
{"title":"有界次优搜索中学习启发式算法的避免错误","authors":"M. Greco, Jorge A. Baier","doi":"10.1609/socs.v15i1.21804","DOIUrl":null,"url":null,"abstract":"Despite being very effective, learned heuristics in bounded-suboptimal search can produce heuristic plateaus or move the search to zones of the state space that do not lead to a solution. In addition, it produces\ninadmissible cost-to-go estimates; therefore, it cannot be exploited with classical algorithms like WA* to produce w-optimal solutions. In this paper, we present two ways in which Focal Search can be modified to exploit a learned heuristic in a bounded suboptimal search: Focal Discrepancy Search, which, to evaluate each state, uses a discrepancy score based on the best-predicted heuristic value; and K-Focal Search,\nwhich expands more than one node from the FOCAL list in each expansion cycle. Both algorithms return w-optimal solutions and explore different zones of the state space than the ones that focal search, using the learned heuristic to sort the FOCAL list, would explore.","PeriodicalId":425645,"journal":{"name":"Symposium on Combinatorial Search","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-07-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Avoiding Errors in Learned Heuristics in Bounded-Suboptimal Search\",\"authors\":\"M. Greco, Jorge A. Baier\",\"doi\":\"10.1609/socs.v15i1.21804\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Despite being very effective, learned heuristics in bounded-suboptimal search can produce heuristic plateaus or move the search to zones of the state space that do not lead to a solution. In addition, it produces\\ninadmissible cost-to-go estimates; therefore, it cannot be exploited with classical algorithms like WA* to produce w-optimal solutions. In this paper, we present two ways in which Focal Search can be modified to exploit a learned heuristic in a bounded suboptimal search: Focal Discrepancy Search, which, to evaluate each state, uses a discrepancy score based on the best-predicted heuristic value; and K-Focal Search,\\nwhich expands more than one node from the FOCAL list in each expansion cycle. Both algorithms return w-optimal solutions and explore different zones of the state space than the ones that focal search, using the learned heuristic to sort the FOCAL list, would explore.\",\"PeriodicalId\":425645,\"journal\":{\"name\":\"Symposium on Combinatorial Search\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-07-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Symposium on Combinatorial Search\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1609/socs.v15i1.21804\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Symposium on Combinatorial Search","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1609/socs.v15i1.21804","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

尽管有界次优搜索中的学习启发式算法非常有效,但它可能会产生启发式平台,或者将搜索移动到状态空间中无法找到解决方案的区域。此外,它还会产生令人难以接受的预估成本;因此,它不能被像WA*这样的经典算法利用来产生w-最优解。在本文中,我们提出了两种方法,可以修改焦点搜索来利用有界次优搜索中的学习启发式:焦点差异搜索,它使用基于最佳预测启发式值的差异评分来评估每个状态;以及K-Focal Search,它在每个扩展周期中从FOCAL列表中扩展多个节点。这两种算法都返回w-最优解,并且探索不同于焦点搜索的状态空间区域,使用学习的启发式对焦点列表进行排序,将探索。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Avoiding Errors in Learned Heuristics in Bounded-Suboptimal Search
Despite being very effective, learned heuristics in bounded-suboptimal search can produce heuristic plateaus or move the search to zones of the state space that do not lead to a solution. In addition, it produces inadmissible cost-to-go estimates; therefore, it cannot be exploited with classical algorithms like WA* to produce w-optimal solutions. In this paper, we present two ways in which Focal Search can be modified to exploit a learned heuristic in a bounded suboptimal search: Focal Discrepancy Search, which, to evaluate each state, uses a discrepancy score based on the best-predicted heuristic value; and K-Focal Search, which expands more than one node from the FOCAL list in each expansion cycle. Both algorithms return w-optimal solutions and explore different zones of the state space than the ones that focal search, using the learned heuristic to sort the FOCAL list, would explore.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信