加速器中的任务分配:绩效评估

Leonel Toledo, Antonio J. Peña, Sandra Catalán, Pedro Valero-Lara
{"title":"加速器中的任务分配:绩效评估","authors":"Leonel Toledo, Antonio J. Peña, Sandra Catalán, Pedro Valero-Lara","doi":"10.1109/PDCAT46702.2019.00034","DOIUrl":null,"url":null,"abstract":"In this work, we analyze the implications and results of implementing dynamic parallelism, concurrent kernels and CUDA Graphs to solve task-oriented problems. As a benchmark we propose three different methods for solving DGEMM operation on tiled-matrices; which might be the most popular benchmark for performance analysis. For the algorithms that we study, we present significant differences in terms of data dependencies, synchronization and granularity. The main contribution of this work is determining which of the previous approaches work better for having multiple task running concurrently in a single GPU, as well as stating the main limitations and benefits of every technique. Using dynamic parallelism and CUDA Streams we were able to achieve up to 30% speedups and for CUDA Graph API up to 25x acceleration outperforming state of the art results.","PeriodicalId":166126,"journal":{"name":"2019 20th International Conference on Parallel and Distributed Computing, Applications and Technologies (PDCAT)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Tasking in Accelerators: Performance Evaluation\",\"authors\":\"Leonel Toledo, Antonio J. Peña, Sandra Catalán, Pedro Valero-Lara\",\"doi\":\"10.1109/PDCAT46702.2019.00034\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this work, we analyze the implications and results of implementing dynamic parallelism, concurrent kernels and CUDA Graphs to solve task-oriented problems. As a benchmark we propose three different methods for solving DGEMM operation on tiled-matrices; which might be the most popular benchmark for performance analysis. For the algorithms that we study, we present significant differences in terms of data dependencies, synchronization and granularity. The main contribution of this work is determining which of the previous approaches work better for having multiple task running concurrently in a single GPU, as well as stating the main limitations and benefits of every technique. Using dynamic parallelism and CUDA Streams we were able to achieve up to 30% speedups and for CUDA Graph API up to 25x acceleration outperforming state of the art results.\",\"PeriodicalId\":166126,\"journal\":{\"name\":\"2019 20th International Conference on Parallel and Distributed Computing, Applications and Technologies (PDCAT)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 20th International Conference on Parallel and Distributed Computing, Applications and Technologies (PDCAT)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/PDCAT46702.2019.00034\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 20th International Conference on Parallel and Distributed Computing, Applications and Technologies (PDCAT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PDCAT46702.2019.00034","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

在这项工作中,我们分析了实现动态并行、并发内核和CUDA图来解决面向任务的问题的含义和结果。作为基准,我们提出了三种不同的方法来求解平铺矩阵上的DGEMM运算;这可能是性能分析中最流行的基准。对于我们所研究的算法,我们在数据依赖性、同步性和粒度方面呈现出显著的差异。这项工作的主要贡献是确定之前的方法中哪一种更适合在单个GPU中同时运行多个任务,以及说明每种技术的主要局限性和优点。使用动态并行和CUDA流,我们能够实现高达30%的加速,CUDA图形API高达25倍的加速,超越了最先进的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Tasking in Accelerators: Performance Evaluation
In this work, we analyze the implications and results of implementing dynamic parallelism, concurrent kernels and CUDA Graphs to solve task-oriented problems. As a benchmark we propose three different methods for solving DGEMM operation on tiled-matrices; which might be the most popular benchmark for performance analysis. For the algorithms that we study, we present significant differences in terms of data dependencies, synchronization and granularity. The main contribution of this work is determining which of the previous approaches work better for having multiple task running concurrently in a single GPU, as well as stating the main limitations and benefits of every technique. Using dynamic parallelism and CUDA Streams we were able to achieve up to 30% speedups and for CUDA Graph API up to 25x acceleration outperforming state of the art results.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信