{"title":"一类非线性系统的采样数据迭代学习控制","authors":"Mingxuan Sun, Danwei W. Wang","doi":"10.1109/ISIC.1999.796678","DOIUrl":null,"url":null,"abstract":"In this paper, a sampled-data iterative learning control (ILC) method is proposed for a class of nonlinear continuous-time systems with higher-order relative degree. The learning control does not require differentiation of tracking error. As the sampling period is set to be small enough, a sufficient condition is derived to guarantee the convergence of the learning process. This method can be applied to a more general class of nonlinear continuous-time systems that the most existing ILC methods fail to work.","PeriodicalId":300130,"journal":{"name":"Proceedings of the 1999 IEEE International Symposium on Intelligent Control Intelligent Systems and Semiotics (Cat. No.99CH37014)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Sampled-data iterative learning control for a class of nonlinear systems\",\"authors\":\"Mingxuan Sun, Danwei W. Wang\",\"doi\":\"10.1109/ISIC.1999.796678\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, a sampled-data iterative learning control (ILC) method is proposed for a class of nonlinear continuous-time systems with higher-order relative degree. The learning control does not require differentiation of tracking error. As the sampling period is set to be small enough, a sufficient condition is derived to guarantee the convergence of the learning process. This method can be applied to a more general class of nonlinear continuous-time systems that the most existing ILC methods fail to work.\",\"PeriodicalId\":300130,\"journal\":{\"name\":\"Proceedings of the 1999 IEEE International Symposium on Intelligent Control Intelligent Systems and Semiotics (Cat. No.99CH37014)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 1999 IEEE International Symposium on Intelligent Control Intelligent Systems and Semiotics (Cat. No.99CH37014)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISIC.1999.796678\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 1999 IEEE International Symposium on Intelligent Control Intelligent Systems and Semiotics (Cat. No.99CH37014)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISIC.1999.796678","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Sampled-data iterative learning control for a class of nonlinear systems
In this paper, a sampled-data iterative learning control (ILC) method is proposed for a class of nonlinear continuous-time systems with higher-order relative degree. The learning control does not require differentiation of tracking error. As the sampling period is set to be small enough, a sufficient condition is derived to guarantee the convergence of the learning process. This method can be applied to a more general class of nonlinear continuous-time systems that the most existing ILC methods fail to work.