基于空间尺度替代的图像多重分形异常检测

H. Wendt, Lorena Leon, J. Tourneret, P. Abry
{"title":"基于空间尺度替代的图像多重分形异常检测","authors":"H. Wendt, Lorena Leon, J. Tourneret, P. Abry","doi":"10.1109/ICIP46576.2022.9897659","DOIUrl":null,"url":null,"abstract":"Multifractal analysis provides a global description for the spatial fluctuations of the strengths of the pointwise regularity of image amplitudes. A global image characterization leads to robust estimation, but is blind to and corrupted by small regions in the image whose multifractality differs from that of the rest of the image. Prior detection of such zones with anomalous multifractality is thus crucial for relevant analysis, and their delineation of central interest in applications, yet has never been achieved so far. The goal of this work is to devise and study such a multifractal anomaly detection scheme. Our approach combines three original key ingredients: i) a recently proposed generic model for the statistics of the multiresolution coefficients used in multifractal estimation (wavelet leaders), ii) an original surrogate data generation procedure for simulating a hypothesized global multifractality and iii) a combination of multiple hypothesis tests to achieve pixel-wise detection. Numerical simulations using synthetic multifractal images show that our procedure is operational and leads to good multifractal anomaly detection results for a range of target sizes and parameter values of practical relevance.","PeriodicalId":387035,"journal":{"name":"2022 IEEE International Conference on Image Processing (ICIP)","volume":"13 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Multifractal Anomaly Detection in Images via Space-Scale Surrogates\",\"authors\":\"H. Wendt, Lorena Leon, J. Tourneret, P. Abry\",\"doi\":\"10.1109/ICIP46576.2022.9897659\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Multifractal analysis provides a global description for the spatial fluctuations of the strengths of the pointwise regularity of image amplitudes. A global image characterization leads to robust estimation, but is blind to and corrupted by small regions in the image whose multifractality differs from that of the rest of the image. Prior detection of such zones with anomalous multifractality is thus crucial for relevant analysis, and their delineation of central interest in applications, yet has never been achieved so far. The goal of this work is to devise and study such a multifractal anomaly detection scheme. Our approach combines three original key ingredients: i) a recently proposed generic model for the statistics of the multiresolution coefficients used in multifractal estimation (wavelet leaders), ii) an original surrogate data generation procedure for simulating a hypothesized global multifractality and iii) a combination of multiple hypothesis tests to achieve pixel-wise detection. Numerical simulations using synthetic multifractal images show that our procedure is operational and leads to good multifractal anomaly detection results for a range of target sizes and parameter values of practical relevance.\",\"PeriodicalId\":387035,\"journal\":{\"name\":\"2022 IEEE International Conference on Image Processing (ICIP)\",\"volume\":\"13 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-10-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 IEEE International Conference on Image Processing (ICIP)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICIP46576.2022.9897659\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE International Conference on Image Processing (ICIP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICIP46576.2022.9897659","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

多重分形分析为图像振幅的点向规律性强度的空间波动提供了一种全局描述。全局图像表征可以实现鲁棒估计,但对图像中多重分形不同于图像其余部分的小区域是盲目的和破坏的。因此,对这些具有异常多重分形的区域的预先检测对于相关分析至关重要,并且它们的描述是应用程序的核心兴趣,但迄今为止尚未实现。本文的目标就是设计和研究这种多重分形异常检测方案。我们的方法结合了三个原始的关键成分:i)最近提出的用于多重分形估计(小波前导)中使用的多分辨率系数统计的通用模型,ii)用于模拟假设的全球多重分形的原始代理数据生成程序,iii)多个假设检验的组合以实现像素检测。利用合成的多重分形图像进行的数值模拟表明,该方法是可操作的,并对一系列具有实际意义的目标尺寸和参数值获得了良好的多重分形异常检测结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Multifractal Anomaly Detection in Images via Space-Scale Surrogates
Multifractal analysis provides a global description for the spatial fluctuations of the strengths of the pointwise regularity of image amplitudes. A global image characterization leads to robust estimation, but is blind to and corrupted by small regions in the image whose multifractality differs from that of the rest of the image. Prior detection of such zones with anomalous multifractality is thus crucial for relevant analysis, and their delineation of central interest in applications, yet has never been achieved so far. The goal of this work is to devise and study such a multifractal anomaly detection scheme. Our approach combines three original key ingredients: i) a recently proposed generic model for the statistics of the multiresolution coefficients used in multifractal estimation (wavelet leaders), ii) an original surrogate data generation procedure for simulating a hypothesized global multifractality and iii) a combination of multiple hypothesis tests to achieve pixel-wise detection. Numerical simulations using synthetic multifractal images show that our procedure is operational and leads to good multifractal anomaly detection results for a range of target sizes and parameter values of practical relevance.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信