{"title":"虚拟化系统中存储I/O性能干扰模型","authors":"G. Casale, Stephan Kraft, Diwakar Krishnamurthy","doi":"10.1109/ICDCSW.2011.46","DOIUrl":null,"url":null,"abstract":"In this paper, we propose simple performance models to predict the impact of consolidation on the storage I/O performance of virtualized applications. We use a measurement-based approach based on tools such as blktrace and tshark for storage workload characterization in a commercial virtualized solution, namely VMware ESX server. Our approach allows a distinct characterization of read/write performance attributes on a per request level and provides valuable information for parameterization of storage I/O performance models. In particular, based on measures of quantities such as the mean queue-length seen upon arrival by requests, we define simple linear prediction models for the throughput, response times, and mix of read/write requests in consolidation based only on information collected in isolation experiments for the individual virtual machines.","PeriodicalId":133514,"journal":{"name":"2011 31st International Conference on Distributed Computing Systems Workshops","volume":"55 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-06-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"45","resultStr":"{\"title\":\"A Model of Storage I/O Performance Interference in Virtualized Systems\",\"authors\":\"G. Casale, Stephan Kraft, Diwakar Krishnamurthy\",\"doi\":\"10.1109/ICDCSW.2011.46\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we propose simple performance models to predict the impact of consolidation on the storage I/O performance of virtualized applications. We use a measurement-based approach based on tools such as blktrace and tshark for storage workload characterization in a commercial virtualized solution, namely VMware ESX server. Our approach allows a distinct characterization of read/write performance attributes on a per request level and provides valuable information for parameterization of storage I/O performance models. In particular, based on measures of quantities such as the mean queue-length seen upon arrival by requests, we define simple linear prediction models for the throughput, response times, and mix of read/write requests in consolidation based only on information collected in isolation experiments for the individual virtual machines.\",\"PeriodicalId\":133514,\"journal\":{\"name\":\"2011 31st International Conference on Distributed Computing Systems Workshops\",\"volume\":\"55 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-06-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"45\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2011 31st International Conference on Distributed Computing Systems Workshops\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICDCSW.2011.46\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 31st International Conference on Distributed Computing Systems Workshops","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICDCSW.2011.46","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A Model of Storage I/O Performance Interference in Virtualized Systems
In this paper, we propose simple performance models to predict the impact of consolidation on the storage I/O performance of virtualized applications. We use a measurement-based approach based on tools such as blktrace and tshark for storage workload characterization in a commercial virtualized solution, namely VMware ESX server. Our approach allows a distinct characterization of read/write performance attributes on a per request level and provides valuable information for parameterization of storage I/O performance models. In particular, based on measures of quantities such as the mean queue-length seen upon arrival by requests, we define simple linear prediction models for the throughput, response times, and mix of read/write requests in consolidation based only on information collected in isolation experiments for the individual virtual machines.