基于子空间学习机(SLM)的分类:方法与性能评价

Hongyu Fu, Yijing Yang, Vinod K. Mishra, C.-C. Jay Kuo
{"title":"基于子空间学习机(SLM)的分类:方法与性能评价","authors":"Hongyu Fu, Yijing Yang, Vinod K. Mishra, C.-C. Jay Kuo","doi":"10.1109/ICASSP49357.2023.10096564","DOIUrl":null,"url":null,"abstract":"Inspired by the decision learning process of multilayer per-ceptron (MLP) and decision tree (DT), a new classification model, named the subspace learning machine (SLM), is proposed in this work. SLM first identifies a discriminant subspace, S0, by examining the discriminant power of each input feature. Then, it learns projections of features in S0 to yield 1D subspaces and finds the optimal partition for each. A criterion is developed to choose the best q partitions that yield 2q partitioned subspaces. The partitioning process is recursively applied at each child node to build an SLM tree. When the samples at a child node are sufficiently pure, the partitioning process stops, and each leaf node makes a prediction. The ensembles of SLM trees can yield a stronger predictor. Extensive experiments are conducted for performance benchmarking among SLM trees, ensembles and classical classifiers.","PeriodicalId":113072,"journal":{"name":"ICASSP 2023 - 2023 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)","volume":"31 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-06-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Classification via Subspace Learning Machine (SLM): Methodology and Performance Evaluation\",\"authors\":\"Hongyu Fu, Yijing Yang, Vinod K. Mishra, C.-C. Jay Kuo\",\"doi\":\"10.1109/ICASSP49357.2023.10096564\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Inspired by the decision learning process of multilayer per-ceptron (MLP) and decision tree (DT), a new classification model, named the subspace learning machine (SLM), is proposed in this work. SLM first identifies a discriminant subspace, S0, by examining the discriminant power of each input feature. Then, it learns projections of features in S0 to yield 1D subspaces and finds the optimal partition for each. A criterion is developed to choose the best q partitions that yield 2q partitioned subspaces. The partitioning process is recursively applied at each child node to build an SLM tree. When the samples at a child node are sufficiently pure, the partitioning process stops, and each leaf node makes a prediction. The ensembles of SLM trees can yield a stronger predictor. Extensive experiments are conducted for performance benchmarking among SLM trees, ensembles and classical classifiers.\",\"PeriodicalId\":113072,\"journal\":{\"name\":\"ICASSP 2023 - 2023 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)\",\"volume\":\"31 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-06-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ICASSP 2023 - 2023 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICASSP49357.2023.10096564\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ICASSP 2023 - 2023 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICASSP49357.2023.10096564","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

受多层感知器(multilayer per-ceptron, MLP)和决策树(decision tree, DT)决策学习过程的启发,提出了一种新的分类模型子空间学习机(subspace learning machine, SLM)。SLM首先通过检查每个输入特征的判别能力来识别一个判别子空间S0。然后,学习S0中特征的投影,生成1D子空间,并为每个子空间找到最优分区。开发了一个准则来选择产生2q个子空间的最佳q个分区。分区过程递归地应用于每个子节点,以构建一个SLM树。当子节点上的样本足够纯时,分区过程停止,每个叶节点进行预测。SLM树的集合可以产生一个更强的预测器。在SLM树、集成和经典分类器之间进行了大量的性能基准测试实验。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Classification via Subspace Learning Machine (SLM): Methodology and Performance Evaluation
Inspired by the decision learning process of multilayer per-ceptron (MLP) and decision tree (DT), a new classification model, named the subspace learning machine (SLM), is proposed in this work. SLM first identifies a discriminant subspace, S0, by examining the discriminant power of each input feature. Then, it learns projections of features in S0 to yield 1D subspaces and finds the optimal partition for each. A criterion is developed to choose the best q partitions that yield 2q partitioned subspaces. The partitioning process is recursively applied at each child node to build an SLM tree. When the samples at a child node are sufficiently pure, the partitioning process stops, and each leaf node makes a prediction. The ensembles of SLM trees can yield a stronger predictor. Extensive experiments are conducted for performance benchmarking among SLM trees, ensembles and classical classifiers.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信