{"title":"生物荧光显微镜背景荧光的计算去除","authors":"Hao-Chih Lee, Ge Yang","doi":"10.1109/ISBI.2014.6867845","DOIUrl":null,"url":null,"abstract":"Background fluorescence is a frequently encountered problem in biological fluorescence microscopy. It often significantly lowers the image signal-to-noise ratio and poses substantial challenges to subsequent computational image analysis. Here we propose a general computational method for separating and removing background fluorescence from a single fluorescence microscopy image. The method is formulated as solving a constrained convex optimization problem and assumes that the background signal is low-rank and additive to the sparse foreground signal. Solution of the optimization problem is found using a forward-backward algorithm. Our method only requires a single image and can be used in a broad range of biological fluorescence applications. We first validate performance of our method using synthetic image data. We then demonstrate applications of the method to actual biological image data.","PeriodicalId":440405,"journal":{"name":"2014 IEEE 11th International Symposium on Biomedical Imaging (ISBI)","volume":"2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-07-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Computational removal ofbackground fluorescence for biological fluorescence microscopy\",\"authors\":\"Hao-Chih Lee, Ge Yang\",\"doi\":\"10.1109/ISBI.2014.6867845\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Background fluorescence is a frequently encountered problem in biological fluorescence microscopy. It often significantly lowers the image signal-to-noise ratio and poses substantial challenges to subsequent computational image analysis. Here we propose a general computational method for separating and removing background fluorescence from a single fluorescence microscopy image. The method is formulated as solving a constrained convex optimization problem and assumes that the background signal is low-rank and additive to the sparse foreground signal. Solution of the optimization problem is found using a forward-backward algorithm. Our method only requires a single image and can be used in a broad range of biological fluorescence applications. We first validate performance of our method using synthetic image data. We then demonstrate applications of the method to actual biological image data.\",\"PeriodicalId\":440405,\"journal\":{\"name\":\"2014 IEEE 11th International Symposium on Biomedical Imaging (ISBI)\",\"volume\":\"2 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-07-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2014 IEEE 11th International Symposium on Biomedical Imaging (ISBI)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISBI.2014.6867845\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 IEEE 11th International Symposium on Biomedical Imaging (ISBI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISBI.2014.6867845","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Computational removal ofbackground fluorescence for biological fluorescence microscopy
Background fluorescence is a frequently encountered problem in biological fluorescence microscopy. It often significantly lowers the image signal-to-noise ratio and poses substantial challenges to subsequent computational image analysis. Here we propose a general computational method for separating and removing background fluorescence from a single fluorescence microscopy image. The method is formulated as solving a constrained convex optimization problem and assumes that the background signal is low-rank and additive to the sparse foreground signal. Solution of the optimization problem is found using a forward-backward algorithm. Our method only requires a single image and can be used in a broad range of biological fluorescence applications. We first validate performance of our method using synthetic image data. We then demonstrate applications of the method to actual biological image data.