多语言环境中手写文本文档的基于脚本的分类

Vivek Singhal, N. Navin, D. Ghosh
{"title":"多语言环境中手写文本文档的基于脚本的分类","authors":"Vivek Singhal, N. Navin, D. Ghosh","doi":"10.1109/RIDE.2003.1249845","DOIUrl":null,"url":null,"abstract":"Script-based text document classification is an important field of research in the context of multilingual textual document processing. But, all script identification techniques available in the literature so far do not consider handwritten documents. Variations in the writing style, character size, inter-line and inter-word spacings, etc. make the recognition process difficult and unreliable when these script identification algorithms, more specifically visual appearance based approaches, are applied directly on hand-written documents. Therefore, in this paper, we propose to preprocess the input document images so as to compensate for the variations due to writing style and thereby making them suitable for analysis on the basis of their visual appearances. Accordingly, we apply denoising, thinning, pruning, m-connectivity and text size normalization in sequence. Multi-channel Gabor filtering is used to extract texture features that characterize the visual appearances of the document images. Experimental result proves the potentiality of our proposed method of script identification for hand-written text document classification.","PeriodicalId":208636,"journal":{"name":"Proceedings. Seventeenth Workshop on Parallel and Distributed Simulation","volume":"6 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2003-03-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"56","resultStr":"{\"title\":\"Script-based classification of hand-written text documents in a multilingual environment\",\"authors\":\"Vivek Singhal, N. Navin, D. Ghosh\",\"doi\":\"10.1109/RIDE.2003.1249845\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Script-based text document classification is an important field of research in the context of multilingual textual document processing. But, all script identification techniques available in the literature so far do not consider handwritten documents. Variations in the writing style, character size, inter-line and inter-word spacings, etc. make the recognition process difficult and unreliable when these script identification algorithms, more specifically visual appearance based approaches, are applied directly on hand-written documents. Therefore, in this paper, we propose to preprocess the input document images so as to compensate for the variations due to writing style and thereby making them suitable for analysis on the basis of their visual appearances. Accordingly, we apply denoising, thinning, pruning, m-connectivity and text size normalization in sequence. Multi-channel Gabor filtering is used to extract texture features that characterize the visual appearances of the document images. Experimental result proves the potentiality of our proposed method of script identification for hand-written text document classification.\",\"PeriodicalId\":208636,\"journal\":{\"name\":\"Proceedings. Seventeenth Workshop on Parallel and Distributed Simulation\",\"volume\":\"6 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2003-03-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"56\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings. Seventeenth Workshop on Parallel and Distributed Simulation\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/RIDE.2003.1249845\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings. Seventeenth Workshop on Parallel and Distributed Simulation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/RIDE.2003.1249845","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 56

摘要

基于脚本的文本文档分类是多语言文本文档处理中的一个重要研究领域。但是,迄今为止文献中所有可用的文字识别技术都不考虑手写文档。当这些文字识别算法,更具体地说是基于视觉外观的方法,直接应用于手写文档时,由于书写风格、字符大小、行间和字间间距等的变化,使得识别过程变得困难和不可靠。因此,在本文中,我们建议对输入的文档图像进行预处理,以补偿由于书写风格的变化,从而使其在视觉外观的基础上适合于分析。相应地,我们依次应用去噪、细化、剪枝、m-连通性和文本大小归一化。多通道Gabor滤波用于提取表征文档图像视觉外观的纹理特征。实验结果证明了该方法在手写体文本文档分类中的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Script-based classification of hand-written text documents in a multilingual environment
Script-based text document classification is an important field of research in the context of multilingual textual document processing. But, all script identification techniques available in the literature so far do not consider handwritten documents. Variations in the writing style, character size, inter-line and inter-word spacings, etc. make the recognition process difficult and unreliable when these script identification algorithms, more specifically visual appearance based approaches, are applied directly on hand-written documents. Therefore, in this paper, we propose to preprocess the input document images so as to compensate for the variations due to writing style and thereby making them suitable for analysis on the basis of their visual appearances. Accordingly, we apply denoising, thinning, pruning, m-connectivity and text size normalization in sequence. Multi-channel Gabor filtering is used to extract texture features that characterize the visual appearances of the document images. Experimental result proves the potentiality of our proposed method of script identification for hand-written text document classification.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信