利用温度预测高频日间电力需求

James McCulloch, Katja Ignatieva
{"title":"利用温度预测高频日间电力需求","authors":"James McCulloch, Katja Ignatieva","doi":"10.2139/ssrn.2958829","DOIUrl":null,"url":null,"abstract":"This paper introduces a Generalised Additive Model (GAM) to link high frequency intraday (5-minute) aggregate electricity demand in Australia to the time of the day and intra-day temperature. We show a superior model fit when using Daylight Saving Time (DST), or clock time, instead of the standard (solar) time. We also introduce the time weighted temperature model that relates instantaneous electricity demand sensitivity to temperature as a function of the daily activity cycle. The results on DST and time weighted temperature modelling are novel in the literature and are important innovations in high frequency electricity demand forecasting. The overall accuracy of the proposed GAM specification in predicting demand is comparable to the accuracy of the commercial demand forecasting model used by the Australian Energy Market Operator (AEMO). The parsimonious GAM model provides a solid foundation for the development of more elaborate models for forecasting high frequency electricity demand.","PeriodicalId":308524,"journal":{"name":"ERN: Other Econometrics: Applied Econometric Modeling in Forecasting (Topic)","volume":"24 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-03-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Forecasting High Frequency Intra-Day Electricity Demand Using Temperature\",\"authors\":\"James McCulloch, Katja Ignatieva\",\"doi\":\"10.2139/ssrn.2958829\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper introduces a Generalised Additive Model (GAM) to link high frequency intraday (5-minute) aggregate electricity demand in Australia to the time of the day and intra-day temperature. We show a superior model fit when using Daylight Saving Time (DST), or clock time, instead of the standard (solar) time. We also introduce the time weighted temperature model that relates instantaneous electricity demand sensitivity to temperature as a function of the daily activity cycle. The results on DST and time weighted temperature modelling are novel in the literature and are important innovations in high frequency electricity demand forecasting. The overall accuracy of the proposed GAM specification in predicting demand is comparable to the accuracy of the commercial demand forecasting model used by the Australian Energy Market Operator (AEMO). The parsimonious GAM model provides a solid foundation for the development of more elaborate models for forecasting high frequency electricity demand.\",\"PeriodicalId\":308524,\"journal\":{\"name\":\"ERN: Other Econometrics: Applied Econometric Modeling in Forecasting (Topic)\",\"volume\":\"24 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-03-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ERN: Other Econometrics: Applied Econometric Modeling in Forecasting (Topic)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2139/ssrn.2958829\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ERN: Other Econometrics: Applied Econometric Modeling in Forecasting (Topic)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2139/ssrn.2958829","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

本文介绍了一种广义加性模型(GAM),将澳大利亚的高频日内(5分钟)总电力需求与一天中的时间和白天的温度联系起来。我们展示了使用夏令时(DST)或时钟时间而不是标准(太阳能)时间时的优越模型拟合。我们还介绍了时间加权温度模型,该模型将瞬时电力需求敏感性与温度作为日常活动周期的函数联系起来。DST和时间加权温度模型的结果在文献中是新颖的,是高频电力需求预测的重要创新。拟议的GAM规范在预测需求方面的总体准确性可与澳大利亚能源市场运营商(AEMO)使用的商业需求预测模型的准确性相媲美。简洁的GAM模型为开发更精细的高频电力需求预测模型提供了坚实的基础。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Forecasting High Frequency Intra-Day Electricity Demand Using Temperature
This paper introduces a Generalised Additive Model (GAM) to link high frequency intraday (5-minute) aggregate electricity demand in Australia to the time of the day and intra-day temperature. We show a superior model fit when using Daylight Saving Time (DST), or clock time, instead of the standard (solar) time. We also introduce the time weighted temperature model that relates instantaneous electricity demand sensitivity to temperature as a function of the daily activity cycle. The results on DST and time weighted temperature modelling are novel in the literature and are important innovations in high frequency electricity demand forecasting. The overall accuracy of the proposed GAM specification in predicting demand is comparable to the accuracy of the commercial demand forecasting model used by the Australian Energy Market Operator (AEMO). The parsimonious GAM model provides a solid foundation for the development of more elaborate models for forecasting high frequency electricity demand.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信