汤森路透在FEIII 2017挑战赛中获得三重排名的解决方案

E. Roman, B. Ulicny, Yi Du, Srijith Poduval, A. Ko
{"title":"汤森路透在FEIII 2017挑战赛中获得三重排名的解决方案","authors":"E. Roman, B. Ulicny, Yi Du, Srijith Poduval, A. Ko","doi":"10.1145/3077240.3077253","DOIUrl":null,"url":null,"abstract":"In this paper we describe our approach to the triple ranking task of the FEIII 2017 challenge. Our method leveraged different machine learning classifiers in an ensemble as well as Thomson Reuters knowledge bases and information services to bring in external world knowledge of mentioned entities and extract information from the contextual sentences. Internal evaluation of our method was done by computing the Normalized Discounted Cumulative Gain (NDCG) as tracked by the challenge and classification accuracy. The official FEIII Challenge evaluation showed our system performed highly in single ranking of all triples, placing in 2nd or 3rd place out of 17 participants for 4 of 6 scoring variants; the system also performed above average in per role ranking for 4 of 6 average role NDCG scoring variants.","PeriodicalId":326424,"journal":{"name":"Proceedings of the 3rd International Workshop on Data Science for Macro--Modeling with Financial and Economic Datasets","volume":"26 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-05-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Thomson Reuters' Solution for Triple Ranking in the FEIII 2017 Challenge\",\"authors\":\"E. Roman, B. Ulicny, Yi Du, Srijith Poduval, A. Ko\",\"doi\":\"10.1145/3077240.3077253\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper we describe our approach to the triple ranking task of the FEIII 2017 challenge. Our method leveraged different machine learning classifiers in an ensemble as well as Thomson Reuters knowledge bases and information services to bring in external world knowledge of mentioned entities and extract information from the contextual sentences. Internal evaluation of our method was done by computing the Normalized Discounted Cumulative Gain (NDCG) as tracked by the challenge and classification accuracy. The official FEIII Challenge evaluation showed our system performed highly in single ranking of all triples, placing in 2nd or 3rd place out of 17 participants for 4 of 6 scoring variants; the system also performed above average in per role ranking for 4 of 6 average role NDCG scoring variants.\",\"PeriodicalId\":326424,\"journal\":{\"name\":\"Proceedings of the 3rd International Workshop on Data Science for Macro--Modeling with Financial and Economic Datasets\",\"volume\":\"26 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-05-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 3rd International Workshop on Data Science for Macro--Modeling with Financial and Economic Datasets\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3077240.3077253\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 3rd International Workshop on Data Science for Macro--Modeling with Financial and Economic Datasets","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3077240.3077253","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在本文中,我们描述了我们对FEIII 2017挑战的三重排名任务的方法。我们的方法利用集成中的不同机器学习分类器以及汤森路透知识库和信息服务来引入提到实体的外部世界知识,并从上下文句子中提取信息。我们的方法的内部评估是通过计算归一化贴现累积增益(NDCG)来跟踪挑战和分类精度。官方的FEIII挑战评估显示,我们的系统在所有三组的单一排名中表现优异,在17个参与者中,6个评分变体中的4个排名第二或第三;该系统在6个平均角色NDCG评分变量中的4个角色的每个角色排名也高于平均水平。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Thomson Reuters' Solution for Triple Ranking in the FEIII 2017 Challenge
In this paper we describe our approach to the triple ranking task of the FEIII 2017 challenge. Our method leveraged different machine learning classifiers in an ensemble as well as Thomson Reuters knowledge bases and information services to bring in external world knowledge of mentioned entities and extract information from the contextual sentences. Internal evaluation of our method was done by computing the Normalized Discounted Cumulative Gain (NDCG) as tracked by the challenge and classification accuracy. The official FEIII Challenge evaluation showed our system performed highly in single ranking of all triples, placing in 2nd or 3rd place out of 17 participants for 4 of 6 scoring variants; the system also performed above average in per role ranking for 4 of 6 average role NDCG scoring variants.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信