{"title":"基于模式序列的光伏能源需求预测","authors":"Y. Fujimoto, Y. Hayashi","doi":"10.1109/ICRERA.2012.6477299","DOIUrl":null,"url":null,"abstract":"Considering recent trends in energy technology development, consumer's energy demand could be influenced by the renewable energy supply in any way. A simple extension of pattern sequence-based forecasting (PSF) enables us to predict demand curves based on the correlated bidimensional time-series by using co-occurrence patterns of energy supply and demand. However, prediction accuracy of PSF deeply depends on the clustering result, which is used for pattern matching. In this paper, a promising clustering method based on nonnegative tensor factorization is applied for this task and evaluated experimentally from the viewpoint of prediction accuracy.","PeriodicalId":239142,"journal":{"name":"2012 International Conference on Renewable Energy Research and Applications (ICRERA)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"21","resultStr":"{\"title\":\"Pattern sequence-based energy demand forecast using photovoltaic energy records\",\"authors\":\"Y. Fujimoto, Y. Hayashi\",\"doi\":\"10.1109/ICRERA.2012.6477299\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Considering recent trends in energy technology development, consumer's energy demand could be influenced by the renewable energy supply in any way. A simple extension of pattern sequence-based forecasting (PSF) enables us to predict demand curves based on the correlated bidimensional time-series by using co-occurrence patterns of energy supply and demand. However, prediction accuracy of PSF deeply depends on the clustering result, which is used for pattern matching. In this paper, a promising clustering method based on nonnegative tensor factorization is applied for this task and evaluated experimentally from the viewpoint of prediction accuracy.\",\"PeriodicalId\":239142,\"journal\":{\"name\":\"2012 International Conference on Renewable Energy Research and Applications (ICRERA)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"21\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2012 International Conference on Renewable Energy Research and Applications (ICRERA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICRERA.2012.6477299\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 International Conference on Renewable Energy Research and Applications (ICRERA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICRERA.2012.6477299","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Pattern sequence-based energy demand forecast using photovoltaic energy records
Considering recent trends in energy technology development, consumer's energy demand could be influenced by the renewable energy supply in any way. A simple extension of pattern sequence-based forecasting (PSF) enables us to predict demand curves based on the correlated bidimensional time-series by using co-occurrence patterns of energy supply and demand. However, prediction accuracy of PSF deeply depends on the clustering result, which is used for pattern matching. In this paper, a promising clustering method based on nonnegative tensor factorization is applied for this task and evaluated experimentally from the viewpoint of prediction accuracy.