训练临床物联网数据和设备互操作性的机器学习模型

Valeryi M. Bezruk, Stanislav A. Krivenko, Oleksandr O. Kyrsanov, Sergii S. Kryvenko, L. Kryvenko
{"title":"训练临床物联网数据和设备互操作性的机器学习模型","authors":"Valeryi M. Bezruk, Stanislav A. Krivenko, Oleksandr O. Kyrsanov, Sergii S. Kryvenko, L. Kryvenko","doi":"10.1109/MECO58584.2023.10154963","DOIUrl":null,"url":null,"abstract":"Data exploration, wrangling, and interactive analysis and visualization were made in an integrated way. How to plot feature importance in Python calculated by the XGBoost model was considered. Features engineering in a dataset has been improved with Haar Transform. The area under the receiver operating characteristic curve was increased from 0.44 for the baseline model to 0.82 for Haar Transform Model.","PeriodicalId":187825,"journal":{"name":"2023 12th Mediterranean Conference on Embedded Computing (MECO)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-06-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Training the Machine Learning Model for Clinical IoT Data and Device Interoperability\",\"authors\":\"Valeryi M. Bezruk, Stanislav A. Krivenko, Oleksandr O. Kyrsanov, Sergii S. Kryvenko, L. Kryvenko\",\"doi\":\"10.1109/MECO58584.2023.10154963\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Data exploration, wrangling, and interactive analysis and visualization were made in an integrated way. How to plot feature importance in Python calculated by the XGBoost model was considered. Features engineering in a dataset has been improved with Haar Transform. The area under the receiver operating characteristic curve was increased from 0.44 for the baseline model to 0.82 for Haar Transform Model.\",\"PeriodicalId\":187825,\"journal\":{\"name\":\"2023 12th Mediterranean Conference on Embedded Computing (MECO)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-06-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2023 12th Mediterranean Conference on Embedded Computing (MECO)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/MECO58584.2023.10154963\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 12th Mediterranean Conference on Embedded Computing (MECO)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MECO58584.2023.10154963","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

数据的挖掘、整理、交互分析和可视化以一体化的方式进行。考虑了如何在Python中绘制由XGBoost模型计算的特征重要性。Haar变换改进了数据集的特征工程。接受者工作特征曲线下的面积从基线模型的0.44增加到Haar变换模型的0.82。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Training the Machine Learning Model for Clinical IoT Data and Device Interoperability
Data exploration, wrangling, and interactive analysis and visualization were made in an integrated way. How to plot feature importance in Python calculated by the XGBoost model was considered. Features engineering in a dataset has been improved with Haar Transform. The area under the receiver operating characteristic curve was increased from 0.44 for the baseline model to 0.82 for Haar Transform Model.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信