{"title":"一些Dini函数的单调性","authors":"Á. Baricz, T. Pogány, R. Szász","doi":"10.1109/SACI.2014.6840085","DOIUrl":null,"url":null,"abstract":"In this note our aim is to deduce some new monotonicity properties for a special combination of Bessel functions of the first kind by using a recently developed Mittag-Leffler expansion for the derivative of a normalized Bessel function of the first kind. These monotonicity properties are used to obtain some new inequalities for Bessel functions of the first kind.","PeriodicalId":163447,"journal":{"name":"2014 IEEE 9th IEEE International Symposium on Applied Computational Intelligence and Informatics (SACI)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-02-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":"{\"title\":\"Monotonicity properties of some Dini functions\",\"authors\":\"Á. Baricz, T. Pogány, R. Szász\",\"doi\":\"10.1109/SACI.2014.6840085\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this note our aim is to deduce some new monotonicity properties for a special combination of Bessel functions of the first kind by using a recently developed Mittag-Leffler expansion for the derivative of a normalized Bessel function of the first kind. These monotonicity properties are used to obtain some new inequalities for Bessel functions of the first kind.\",\"PeriodicalId\":163447,\"journal\":{\"name\":\"2014 IEEE 9th IEEE International Symposium on Applied Computational Intelligence and Informatics (SACI)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-02-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2014 IEEE 9th IEEE International Symposium on Applied Computational Intelligence and Informatics (SACI)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SACI.2014.6840085\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 IEEE 9th IEEE International Symposium on Applied Computational Intelligence and Informatics (SACI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SACI.2014.6840085","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
In this note our aim is to deduce some new monotonicity properties for a special combination of Bessel functions of the first kind by using a recently developed Mittag-Leffler expansion for the derivative of a normalized Bessel function of the first kind. These monotonicity properties are used to obtain some new inequalities for Bessel functions of the first kind.