一些Dini函数的单调性

Á. Baricz, T. Pogány, R. Szász
{"title":"一些Dini函数的单调性","authors":"Á. Baricz, T. Pogány, R. Szász","doi":"10.1109/SACI.2014.6840085","DOIUrl":null,"url":null,"abstract":"In this note our aim is to deduce some new monotonicity properties for a special combination of Bessel functions of the first kind by using a recently developed Mittag-Leffler expansion for the derivative of a normalized Bessel function of the first kind. These monotonicity properties are used to obtain some new inequalities for Bessel functions of the first kind.","PeriodicalId":163447,"journal":{"name":"2014 IEEE 9th IEEE International Symposium on Applied Computational Intelligence and Informatics (SACI)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-02-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":"{\"title\":\"Monotonicity properties of some Dini functions\",\"authors\":\"Á. Baricz, T. Pogány, R. Szász\",\"doi\":\"10.1109/SACI.2014.6840085\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this note our aim is to deduce some new monotonicity properties for a special combination of Bessel functions of the first kind by using a recently developed Mittag-Leffler expansion for the derivative of a normalized Bessel function of the first kind. These monotonicity properties are used to obtain some new inequalities for Bessel functions of the first kind.\",\"PeriodicalId\":163447,\"journal\":{\"name\":\"2014 IEEE 9th IEEE International Symposium on Applied Computational Intelligence and Informatics (SACI)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-02-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2014 IEEE 9th IEEE International Symposium on Applied Computational Intelligence and Informatics (SACI)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SACI.2014.6840085\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 IEEE 9th IEEE International Symposium on Applied Computational Intelligence and Informatics (SACI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SACI.2014.6840085","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

摘要

本文的目的是利用最近发展的第一类归一化贝塞尔函数导数的mittagg - leffler展开式,推导出一类贝塞尔函数的特殊组合的一些新的单调性性质。利用这些单调性,得到了一类贝塞尔函数的一些新的不等式。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Monotonicity properties of some Dini functions
In this note our aim is to deduce some new monotonicity properties for a special combination of Bessel functions of the first kind by using a recently developed Mittag-Leffler expansion for the derivative of a normalized Bessel function of the first kind. These monotonicity properties are used to obtain some new inequalities for Bessel functions of the first kind.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信