SAR目标识别的细粒度连续学习

Zhicong Zheng, Xiangli Nie, Bo Zhang
{"title":"SAR目标识别的细粒度连续学习","authors":"Zhicong Zheng, Xiangli Nie, Bo Zhang","doi":"10.1109/IGARSS46834.2022.9884149","DOIUrl":null,"url":null,"abstract":"Synthetic Aperture Radar (SAR) systems work in the open and dynamic environment, and capture new data or new targets continually over time. It requires that SAR target recognition algorithms should have the capability to learn new targets incrementally without forgetting the previously learned targets. Besides, SAR targets of different classes usually have subtle differences which makes the recognition more challenging. In this paper, we propose a fine-grained continual learning algorithm for SAR incremental target recognition. Since data imbalance between old and new classes results in the forgetting of old classes, class-balanced loss is introduced to alleviate this phenomenon. In addition, covariance pooling network is utilized to explore the higher-order statistical information to improve the discrimination of features. Experimental results on real SAR datasets validate the effectiveness of the proposed method.","PeriodicalId":426003,"journal":{"name":"IGARSS 2022 - 2022 IEEE International Geoscience and Remote Sensing Symposium","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-07-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Fine-Grained Continual Learning for SAR Target Recognition\",\"authors\":\"Zhicong Zheng, Xiangli Nie, Bo Zhang\",\"doi\":\"10.1109/IGARSS46834.2022.9884149\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Synthetic Aperture Radar (SAR) systems work in the open and dynamic environment, and capture new data or new targets continually over time. It requires that SAR target recognition algorithms should have the capability to learn new targets incrementally without forgetting the previously learned targets. Besides, SAR targets of different classes usually have subtle differences which makes the recognition more challenging. In this paper, we propose a fine-grained continual learning algorithm for SAR incremental target recognition. Since data imbalance between old and new classes results in the forgetting of old classes, class-balanced loss is introduced to alleviate this phenomenon. In addition, covariance pooling network is utilized to explore the higher-order statistical information to improve the discrimination of features. Experimental results on real SAR datasets validate the effectiveness of the proposed method.\",\"PeriodicalId\":426003,\"journal\":{\"name\":\"IGARSS 2022 - 2022 IEEE International Geoscience and Remote Sensing Symposium\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-07-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IGARSS 2022 - 2022 IEEE International Geoscience and Remote Sensing Symposium\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IGARSS46834.2022.9884149\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IGARSS 2022 - 2022 IEEE International Geoscience and Remote Sensing Symposium","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IGARSS46834.2022.9884149","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

合成孔径雷达(SAR)系统工作在开放和动态的环境中,随着时间的推移不断捕获新的数据或新的目标。这就要求SAR目标识别算法具有增量学习新目标的能力,而不会忘记以前学习过的目标。此外,不同类别的SAR目标通常存在细微的差异,这给识别带来了很大的挑战。本文提出了一种用于SAR增量目标识别的细粒度连续学习算法。由于新旧类之间的数据不平衡会导致旧类的遗忘,因此引入类平衡损失来缓解这一现象。此外,利用协方差池化网络对高阶统计信息进行挖掘,提高特征的识别能力。在真实SAR数据集上的实验结果验证了该方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Fine-Grained Continual Learning for SAR Target Recognition
Synthetic Aperture Radar (SAR) systems work in the open and dynamic environment, and capture new data or new targets continually over time. It requires that SAR target recognition algorithms should have the capability to learn new targets incrementally without forgetting the previously learned targets. Besides, SAR targets of different classes usually have subtle differences which makes the recognition more challenging. In this paper, we propose a fine-grained continual learning algorithm for SAR incremental target recognition. Since data imbalance between old and new classes results in the forgetting of old classes, class-balanced loss is introduced to alleviate this phenomenon. In addition, covariance pooling network is utilized to explore the higher-order statistical information to improve the discrimination of features. Experimental results on real SAR datasets validate the effectiveness of the proposed method.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信