{"title":"基于YOLOv3模型的交通标志识别与距离估计","authors":"Gokul S R Nath, Jashaswimalya Acharjee, S. Deb","doi":"10.1109/3ICT53449.2021.9581655","DOIUrl":null,"url":null,"abstract":"Due to the expeditious increase in the number of vehicles, there is an increase in the number of road casualties even in a highly sophisticated roadway. This depicts the natural limitation of a human in maintaining Traffic rules. To avoid any lethal circumstance assistive driving vehicles are introduced which consists of systems that guide drivers in different Traffic situations. Traffic sign recognition systems play a crucial role in assistive driving vehicles these systems have been based on characteristics of the sign and two-state detectors due to accuracy and real-time factors systems on these bases are not used for real-time application. In this paper, we present a system that can recognize Traffic signs and their distance from the vehicle in non-ideal lighting as well as in varying climatic conditions. Our work proceeds with the implementation of YOLOv3(deep convolutional network based on end-to-end detection algorithm) used for Traffic sign recognition and segmentation. Training of the model is done with GTSRB dataset and achieves an accuracy of about 98.5% for the recognition task in different real-time scenarios. Furthermore, an efficient Heuristic-based approach has been deployed for estimating the distance between the Traffic sign and the monocular camera(placed in the vehicle) at every instance.","PeriodicalId":133021,"journal":{"name":"2021 International Conference on Innovation and Intelligence for Informatics, Computing, and Technologies (3ICT)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-09-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Traffic Sign Recognition and Distance Estimation with YOLOv3 model\",\"authors\":\"Gokul S R Nath, Jashaswimalya Acharjee, S. Deb\",\"doi\":\"10.1109/3ICT53449.2021.9581655\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Due to the expeditious increase in the number of vehicles, there is an increase in the number of road casualties even in a highly sophisticated roadway. This depicts the natural limitation of a human in maintaining Traffic rules. To avoid any lethal circumstance assistive driving vehicles are introduced which consists of systems that guide drivers in different Traffic situations. Traffic sign recognition systems play a crucial role in assistive driving vehicles these systems have been based on characteristics of the sign and two-state detectors due to accuracy and real-time factors systems on these bases are not used for real-time application. In this paper, we present a system that can recognize Traffic signs and their distance from the vehicle in non-ideal lighting as well as in varying climatic conditions. Our work proceeds with the implementation of YOLOv3(deep convolutional network based on end-to-end detection algorithm) used for Traffic sign recognition and segmentation. Training of the model is done with GTSRB dataset and achieves an accuracy of about 98.5% for the recognition task in different real-time scenarios. Furthermore, an efficient Heuristic-based approach has been deployed for estimating the distance between the Traffic sign and the monocular camera(placed in the vehicle) at every instance.\",\"PeriodicalId\":133021,\"journal\":{\"name\":\"2021 International Conference on Innovation and Intelligence for Informatics, Computing, and Technologies (3ICT)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-09-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 International Conference on Innovation and Intelligence for Informatics, Computing, and Technologies (3ICT)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/3ICT53449.2021.9581655\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 International Conference on Innovation and Intelligence for Informatics, Computing, and Technologies (3ICT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/3ICT53449.2021.9581655","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Traffic Sign Recognition and Distance Estimation with YOLOv3 model
Due to the expeditious increase in the number of vehicles, there is an increase in the number of road casualties even in a highly sophisticated roadway. This depicts the natural limitation of a human in maintaining Traffic rules. To avoid any lethal circumstance assistive driving vehicles are introduced which consists of systems that guide drivers in different Traffic situations. Traffic sign recognition systems play a crucial role in assistive driving vehicles these systems have been based on characteristics of the sign and two-state detectors due to accuracy and real-time factors systems on these bases are not used for real-time application. In this paper, we present a system that can recognize Traffic signs and their distance from the vehicle in non-ideal lighting as well as in varying climatic conditions. Our work proceeds with the implementation of YOLOv3(deep convolutional network based on end-to-end detection algorithm) used for Traffic sign recognition and segmentation. Training of the model is done with GTSRB dataset and achieves an accuracy of about 98.5% for the recognition task in different real-time scenarios. Furthermore, an efficient Heuristic-based approach has been deployed for estimating the distance between the Traffic sign and the monocular camera(placed in the vehicle) at every instance.