不断发展的多代理捕获策略的间断随时学习

H. Blumenthal, G. Parker
{"title":"不断发展的多代理捕获策略的间断随时学习","authors":"H. Blumenthal, G. Parker","doi":"10.1109/CEC.2004.1331117","DOIUrl":null,"url":null,"abstract":"The evolution of a team of heterogeneous agents is challenging. To allow the greatest level of specialization team members must be evolved in separate populations, but finding acceptable partners for evaluation at trial time is difficult. Testing too few partners blinds the GA from recognizing fit solutions while testing too many partners makes the computation time unmanageable. We developed a system based on punctuated anytime learning that periodically tests a number of partner combinations to select a single individual from each population to be used at trial time. We previously tested our method with a two agent box-pushing task. In this work, we show the efficiency of our method by applying it to the predator-prey scenario.","PeriodicalId":152088,"journal":{"name":"Proceedings of the 2004 Congress on Evolutionary Computation (IEEE Cat. No.04TH8753)","volume":"2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2004-06-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":"{\"title\":\"Punctuated anytime learning for evolving multi-agent capture strategies\",\"authors\":\"H. Blumenthal, G. Parker\",\"doi\":\"10.1109/CEC.2004.1331117\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The evolution of a team of heterogeneous agents is challenging. To allow the greatest level of specialization team members must be evolved in separate populations, but finding acceptable partners for evaluation at trial time is difficult. Testing too few partners blinds the GA from recognizing fit solutions while testing too many partners makes the computation time unmanageable. We developed a system based on punctuated anytime learning that periodically tests a number of partner combinations to select a single individual from each population to be used at trial time. We previously tested our method with a two agent box-pushing task. In this work, we show the efficiency of our method by applying it to the predator-prey scenario.\",\"PeriodicalId\":152088,\"journal\":{\"name\":\"Proceedings of the 2004 Congress on Evolutionary Computation (IEEE Cat. No.04TH8753)\",\"volume\":\"2 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2004-06-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 2004 Congress on Evolutionary Computation (IEEE Cat. No.04TH8753)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CEC.2004.1331117\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2004 Congress on Evolutionary Computation (IEEE Cat. No.04TH8753)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CEC.2004.1331117","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

摘要

异构代理团队的进化是具有挑战性的。为了允许最大程度的专业化,团队成员必须在不同的群体中发展,但是在试验期间找到可接受的合作伙伴进行评估是困难的。测试过少的伙伴会使遗传算法无法识别合适的解决方案,而测试过多的伙伴会使计算时间难以管理。我们开发了一个基于间断随时学习的系统,定期测试许多伴侣组合,从每个群体中选择一个个体在试验时使用。我们之前用两个代理推盒任务测试了我们的方法。在这项工作中,我们通过将其应用于捕食者-猎物场景来展示我们的方法的效率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Punctuated anytime learning for evolving multi-agent capture strategies
The evolution of a team of heterogeneous agents is challenging. To allow the greatest level of specialization team members must be evolved in separate populations, but finding acceptable partners for evaluation at trial time is difficult. Testing too few partners blinds the GA from recognizing fit solutions while testing too many partners makes the computation time unmanageable. We developed a system based on punctuated anytime learning that periodically tests a number of partner combinations to select a single individual from each population to be used at trial time. We previously tested our method with a two agent box-pushing task. In this work, we show the efficiency of our method by applying it to the predator-prey scenario.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信