G. Vivarelli, João A. Isler, F. Montomoli, S. Sherwin, P. Adami
{"title":"实际压力梯度和高雷诺数下过渡边界层的高阶谱/高压可压缩和不可压缩比较","authors":"G. Vivarelli, João A. Isler, F. Montomoli, S. Sherwin, P. Adami","doi":"10.1115/gt2022-82100","DOIUrl":null,"url":null,"abstract":"\n Within the literature, there are limited high-order results concerning large Reynolds number flows under the influence of strong adverse pressure gradients, mainly due to the computational expense involved. The main advantage in employing high-order methodologies over standard second-order finite-volume solvers, relates to their ability to increase accuracy with a significantly lower number of degrees of freedom. In theory, this would permit Direct Numerical Simulation sort of analysis. Yet, there is still a significant computational cost involved. For this reason, an efficient approach to analyse such flows by means of a Nektar++ high-order Implicit Large Eddy Simulation is proposed.\n The flow conditions considered in this case cause a separation bubble to form with consequent turbulent transition. In particular, Tollmien-Schlichting instabilities trigger Kelvin-Helmholtz behaviour, which in turn cause the turbulent transition.\n The bulk of the study will be carried out with the incompressible flow solver, as it is assumed that compressibility effects are negligible within the boundary layer. An initial 2D analysis will be conducted to determine the necessary spatial resolution and whether it is possible to consider a subset of the overall simulation domain to reduce the computational expense. Once this will have been established, the 3D results will be achieved by Fourier expansion in the cross-flow direction. These results will prove the cost-effectiveness of the methodology, that could be used within an industrial setting with a limited turn-around time. Additionally, a comparison between the results achieved by means of the Nektar++ compressible flow solver in 2D and 3D will be provided, to assess any differences that may be present.","PeriodicalId":191970,"journal":{"name":"Volume 10C: Turbomachinery — Design Methods and CFD Modeling for Turbomachinery; Ducts, Noise, and Component Interactions","volume":"21 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-06-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"High-Order Spectral/hp Compressible and Incompressible Comparison of Transitional Boundary-Layers Subject to a Realistic Pressure Gradient and High Reynolds Number\",\"authors\":\"G. Vivarelli, João A. Isler, F. Montomoli, S. Sherwin, P. Adami\",\"doi\":\"10.1115/gt2022-82100\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n Within the literature, there are limited high-order results concerning large Reynolds number flows under the influence of strong adverse pressure gradients, mainly due to the computational expense involved. The main advantage in employing high-order methodologies over standard second-order finite-volume solvers, relates to their ability to increase accuracy with a significantly lower number of degrees of freedom. In theory, this would permit Direct Numerical Simulation sort of analysis. Yet, there is still a significant computational cost involved. For this reason, an efficient approach to analyse such flows by means of a Nektar++ high-order Implicit Large Eddy Simulation is proposed.\\n The flow conditions considered in this case cause a separation bubble to form with consequent turbulent transition. In particular, Tollmien-Schlichting instabilities trigger Kelvin-Helmholtz behaviour, which in turn cause the turbulent transition.\\n The bulk of the study will be carried out with the incompressible flow solver, as it is assumed that compressibility effects are negligible within the boundary layer. An initial 2D analysis will be conducted to determine the necessary spatial resolution and whether it is possible to consider a subset of the overall simulation domain to reduce the computational expense. Once this will have been established, the 3D results will be achieved by Fourier expansion in the cross-flow direction. These results will prove the cost-effectiveness of the methodology, that could be used within an industrial setting with a limited turn-around time. Additionally, a comparison between the results achieved by means of the Nektar++ compressible flow solver in 2D and 3D will be provided, to assess any differences that may be present.\",\"PeriodicalId\":191970,\"journal\":{\"name\":\"Volume 10C: Turbomachinery — Design Methods and CFD Modeling for Turbomachinery; Ducts, Noise, and Component Interactions\",\"volume\":\"21 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-06-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Volume 10C: Turbomachinery — Design Methods and CFD Modeling for Turbomachinery; Ducts, Noise, and Component Interactions\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1115/gt2022-82100\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Volume 10C: Turbomachinery — Design Methods and CFD Modeling for Turbomachinery; Ducts, Noise, and Component Interactions","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/gt2022-82100","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
High-Order Spectral/hp Compressible and Incompressible Comparison of Transitional Boundary-Layers Subject to a Realistic Pressure Gradient and High Reynolds Number
Within the literature, there are limited high-order results concerning large Reynolds number flows under the influence of strong adverse pressure gradients, mainly due to the computational expense involved. The main advantage in employing high-order methodologies over standard second-order finite-volume solvers, relates to their ability to increase accuracy with a significantly lower number of degrees of freedom. In theory, this would permit Direct Numerical Simulation sort of analysis. Yet, there is still a significant computational cost involved. For this reason, an efficient approach to analyse such flows by means of a Nektar++ high-order Implicit Large Eddy Simulation is proposed.
The flow conditions considered in this case cause a separation bubble to form with consequent turbulent transition. In particular, Tollmien-Schlichting instabilities trigger Kelvin-Helmholtz behaviour, which in turn cause the turbulent transition.
The bulk of the study will be carried out with the incompressible flow solver, as it is assumed that compressibility effects are negligible within the boundary layer. An initial 2D analysis will be conducted to determine the necessary spatial resolution and whether it is possible to consider a subset of the overall simulation domain to reduce the computational expense. Once this will have been established, the 3D results will be achieved by Fourier expansion in the cross-flow direction. These results will prove the cost-effectiveness of the methodology, that could be used within an industrial setting with a limited turn-around time. Additionally, a comparison between the results achieved by means of the Nektar++ compressible flow solver in 2D and 3D will be provided, to assess any differences that may be present.