Ala Zuskin Perelman
{"title":"Curriculum vitae","authors":"Ala Zuskin Perelman","doi":"10.4000/books.aaccademia.6548","DOIUrl":null,"url":null,"abstract":"Short Research Statement. Through a unifying framework, with the power of continuous relaxations (beyond convexity) and primal-dual certificates (using Karush-Kuhn-Tucker conditions), my research group produces novel algorithms for learning and inference in combinatorial problems. Our aim is to generate correct, computationally efficient and statistically efficient algorithms for high dimensional machine learning problems. Our results pertain not only to classical worst-case NP-hard problems, such as learning and inference in structured prediction, community detection and learning Bayesian networks, but also to areas of recent interest such as fairness, meta learning and federated learning.","PeriodicalId":377817,"journal":{"name":"I viaggi di Veniamin","volume":"9 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"I viaggi di Veniamin","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4000/books.aaccademia.6548","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

简短的研究陈述。通过一个统一的框架,利用连续松弛(超越凸性)和原始对偶证明(使用Karush-Kuhn-Tucker条件)的力量,我的研究小组产生了用于组合问题学习和推理的新算法。我们的目标是为高维机器学习问题生成正确的、计算高效的和统计高效的算法。我们的研究结果不仅涉及经典的最坏情况np困难问题,如结构化预测中的学习和推理、社区检测和学习贝叶斯网络,还涉及最近感兴趣的领域,如公平性、元学习和联邦学习。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Curriculum vitae
Short Research Statement. Through a unifying framework, with the power of continuous relaxations (beyond convexity) and primal-dual certificates (using Karush-Kuhn-Tucker conditions), my research group produces novel algorithms for learning and inference in combinatorial problems. Our aim is to generate correct, computationally efficient and statistically efficient algorithms for high dimensional machine learning problems. Our results pertain not only to classical worst-case NP-hard problems, such as learning and inference in structured prediction, community detection and learning Bayesian networks, but also to areas of recent interest such as fairness, meta learning and federated learning.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信