介绍ACAS Xu和未来的挑战

Guido Manfredi, Y. Jestin
{"title":"介绍ACAS Xu和未来的挑战","authors":"Guido Manfredi, Y. Jestin","doi":"10.1109/DASC.2016.7778055","DOIUrl":null,"url":null,"abstract":"According to a 2013 AUVSI report, delays in integrating Unmanned Aerial Systems (UAS) into the National Airspace System (NAS) could cost more than $10 billions a year for the United States alone. Worldwide regulatory bodies are under pressure by the UAS industry to accelerate the regulation process, but safety remains their main objective. One condition for the safe introduction of UAS in the NAS is for them to be equipped with a collision avoidance system. Though the existing Airborne Collision Avoidance System II (ACAS II) could have been an option, the transformations of air traffic management engaged through NextGen (US) and SESAR (Europe) led to the definition of a new ACAS based on new logics, namely ACAS X. Its definition contains in particular two variations : ACAS Xa, for large aircraft, and ACAS Xu, for unmanned aircraft. As noted in a 2014 RTCA annual report, divide in technological knowledge between those experienced in ACAS II and those involved in the development of ACAS X is a concern. To help preventing this divide we believe it is essential to keep the community updated with the latest evolutions of the ACAS X standards. As work on Minimum Operational Performance Standards (MOPS) for ACAS Xu just started, it is of interest to know which parts of the MOPS are already decided, which remain flexible for the industries to make the difference and which are open research problems. Being a member of the ACAS X family, ACAS Xu lays on the same foundations as the well defined ACAS Xa standard. This work proposes an introduction to the ACAS Xa/Xu common basis, as it is unlikely to change, including the general architecture and Collision Avoidance (CA) logics. It is followed by a presentation of concepts specific to ACAS Xu such as the tailored threat logic, horizontal CA logic, CA coordination and automatic responses. For the flexible part, we believe it mainly concerns the surveillance sources. Instead of a precise standard, the regulation is likely to ask for requirements on the sensors capabilities. A state of the art of recent works allows proposing minimum sensor performances and focusing on an essential set of sensors. This work is concluded by presenting future challenges that need to be addressed to build a safe ACAS Xu baseline and to extend it to smaller and lower altitude UAS.","PeriodicalId":340472,"journal":{"name":"2016 IEEE/AIAA 35th Digital Avionics Systems Conference (DASC)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"55","resultStr":"{\"title\":\"An introduction to ACAS Xu and the challenges ahead\",\"authors\":\"Guido Manfredi, Y. Jestin\",\"doi\":\"10.1109/DASC.2016.7778055\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"According to a 2013 AUVSI report, delays in integrating Unmanned Aerial Systems (UAS) into the National Airspace System (NAS) could cost more than $10 billions a year for the United States alone. Worldwide regulatory bodies are under pressure by the UAS industry to accelerate the regulation process, but safety remains their main objective. One condition for the safe introduction of UAS in the NAS is for them to be equipped with a collision avoidance system. Though the existing Airborne Collision Avoidance System II (ACAS II) could have been an option, the transformations of air traffic management engaged through NextGen (US) and SESAR (Europe) led to the definition of a new ACAS based on new logics, namely ACAS X. Its definition contains in particular two variations : ACAS Xa, for large aircraft, and ACAS Xu, for unmanned aircraft. As noted in a 2014 RTCA annual report, divide in technological knowledge between those experienced in ACAS II and those involved in the development of ACAS X is a concern. To help preventing this divide we believe it is essential to keep the community updated with the latest evolutions of the ACAS X standards. As work on Minimum Operational Performance Standards (MOPS) for ACAS Xu just started, it is of interest to know which parts of the MOPS are already decided, which remain flexible for the industries to make the difference and which are open research problems. Being a member of the ACAS X family, ACAS Xu lays on the same foundations as the well defined ACAS Xa standard. This work proposes an introduction to the ACAS Xa/Xu common basis, as it is unlikely to change, including the general architecture and Collision Avoidance (CA) logics. It is followed by a presentation of concepts specific to ACAS Xu such as the tailored threat logic, horizontal CA logic, CA coordination and automatic responses. For the flexible part, we believe it mainly concerns the surveillance sources. Instead of a precise standard, the regulation is likely to ask for requirements on the sensors capabilities. A state of the art of recent works allows proposing minimum sensor performances and focusing on an essential set of sensors. This work is concluded by presenting future challenges that need to be addressed to build a safe ACAS Xu baseline and to extend it to smaller and lower altitude UAS.\",\"PeriodicalId\":340472,\"journal\":{\"name\":\"2016 IEEE/AIAA 35th Digital Avionics Systems Conference (DASC)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"55\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 IEEE/AIAA 35th Digital Avionics Systems Conference (DASC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/DASC.2016.7778055\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE/AIAA 35th Digital Avionics Systems Conference (DASC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DASC.2016.7778055","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 55

摘要

根据2013年AUVSI的一份报告,将无人机系统(UAS)集成到国家空域系统(NAS)的延迟可能会使美国每年损失超过100亿美元。全球监管机构受到无人机行业的压力,要求加快监管进程,但安全仍然是他们的主要目标。在NAS中安全引入UAS的一个条件是它们必须配备防撞系统。虽然现有的机载避碰系统II (ACAS II)可能是一种选择,但通过NextGen(美国)和SESAR(欧洲)进行的空中交通管理转型导致了基于新逻辑的新ACAS的定义,即ACAS x。其定义特别包含两个变体:用于大型飞机的ACAS Xa和用于无人飞机的ACAS Xu。正如2014年RTCA年度报告所指出的那样,在ACAS II中有经验的人员和参与ACAS X开发的人员之间的技术知识鸿沟是一个问题。为了防止这种分歧,我们认为有必要让社区了解ACAS X标准的最新发展。由于ACAS Xu的最低运营绩效标准(MOPS)的工作刚刚开始,我们有兴趣知道MOPS的哪些部分已经确定,哪些部分仍然可以灵活地为行业做出改变,哪些是开放的研究问题。作为ACAS X家族的一员,ACAS Xu与定义良好的ACAS Xa标准建立了相同的基础。这项工作提出了对ACAS Xa/Xu公共基础的介绍,因为它不太可能改变,包括通用架构和避免碰撞(CA)逻辑。随后介绍了ACAS Xu特有的概念,例如定制的威胁逻辑、水平CA逻辑、CA协调和自动响应。对于柔性部分,我们认为主要涉及监控源。该规定可能会要求对传感器的功能提出要求,而不是制定精确的标准。最近工作的艺术状态允许提出最小的传感器性能,并专注于一组基本的传感器。这项工作的结论是提出了未来需要解决的挑战,以建立一个安全的ACAS Xu基线,并将其扩展到更小、更低高度的无人机。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
An introduction to ACAS Xu and the challenges ahead
According to a 2013 AUVSI report, delays in integrating Unmanned Aerial Systems (UAS) into the National Airspace System (NAS) could cost more than $10 billions a year for the United States alone. Worldwide regulatory bodies are under pressure by the UAS industry to accelerate the regulation process, but safety remains their main objective. One condition for the safe introduction of UAS in the NAS is for them to be equipped with a collision avoidance system. Though the existing Airborne Collision Avoidance System II (ACAS II) could have been an option, the transformations of air traffic management engaged through NextGen (US) and SESAR (Europe) led to the definition of a new ACAS based on new logics, namely ACAS X. Its definition contains in particular two variations : ACAS Xa, for large aircraft, and ACAS Xu, for unmanned aircraft. As noted in a 2014 RTCA annual report, divide in technological knowledge between those experienced in ACAS II and those involved in the development of ACAS X is a concern. To help preventing this divide we believe it is essential to keep the community updated with the latest evolutions of the ACAS X standards. As work on Minimum Operational Performance Standards (MOPS) for ACAS Xu just started, it is of interest to know which parts of the MOPS are already decided, which remain flexible for the industries to make the difference and which are open research problems. Being a member of the ACAS X family, ACAS Xu lays on the same foundations as the well defined ACAS Xa standard. This work proposes an introduction to the ACAS Xa/Xu common basis, as it is unlikely to change, including the general architecture and Collision Avoidance (CA) logics. It is followed by a presentation of concepts specific to ACAS Xu such as the tailored threat logic, horizontal CA logic, CA coordination and automatic responses. For the flexible part, we believe it mainly concerns the surveillance sources. Instead of a precise standard, the regulation is likely to ask for requirements on the sensors capabilities. A state of the art of recent works allows proposing minimum sensor performances and focusing on an essential set of sensors. This work is concluded by presenting future challenges that need to be addressed to build a safe ACAS Xu baseline and to extend it to smaller and lower altitude UAS.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信