分数阶布朗运动驱动慢速系统的离散时间推理

S. Bourguin, S. Gailus, K. Spiliopoulos
{"title":"分数阶布朗运动驱动慢速系统的离散时间推理","authors":"S. Bourguin, S. Gailus, K. Spiliopoulos","doi":"10.1137/20m135813x","DOIUrl":null,"url":null,"abstract":"We study statistical inference for small-noise-perturbed multiscale dynamical systems where the slow motion is driven by fractional Brownian motion. We develop statistical estimators for both the Hurst index as well as a vector of unknown parameters in the model based on a single time series of observations from the slow process only. We prove that these estimators are both consistent and asymptotically normal as the amplitude of the perturbation and the time-scale separation parameter go to zero. Numerical simulations illustrate the theoretical results.","PeriodicalId":313703,"journal":{"name":"Multiscale Model. Simul.","volume":"46 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-07-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Discrete-Time Inference for Slow-Fast Systems Driven by Fractional Brownian Motion\",\"authors\":\"S. Bourguin, S. Gailus, K. Spiliopoulos\",\"doi\":\"10.1137/20m135813x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We study statistical inference for small-noise-perturbed multiscale dynamical systems where the slow motion is driven by fractional Brownian motion. We develop statistical estimators for both the Hurst index as well as a vector of unknown parameters in the model based on a single time series of observations from the slow process only. We prove that these estimators are both consistent and asymptotically normal as the amplitude of the perturbation and the time-scale separation parameter go to zero. Numerical simulations illustrate the theoretical results.\",\"PeriodicalId\":313703,\"journal\":{\"name\":\"Multiscale Model. Simul.\",\"volume\":\"46 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-07-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Multiscale Model. Simul.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1137/20m135813x\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Multiscale Model. Simul.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1137/20m135813x","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

研究了慢运动由分数阶布朗运动驱动的小噪声摄动多尺度动力系统的统计推断。我们开发了赫斯特指数的统计估计器以及模型中未知参数的向量,这些向量仅基于来自缓慢过程的单个时间序列的观测。我们证明了当扰动的振幅和时标分离参数趋近于零时,这些估计量是一致的和渐近正态的。数值模拟验证了理论结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Discrete-Time Inference for Slow-Fast Systems Driven by Fractional Brownian Motion
We study statistical inference for small-noise-perturbed multiscale dynamical systems where the slow motion is driven by fractional Brownian motion. We develop statistical estimators for both the Hurst index as well as a vector of unknown parameters in the model based on a single time series of observations from the slow process only. We prove that these estimators are both consistent and asymptotically normal as the amplitude of the perturbation and the time-scale separation parameter go to zero. Numerical simulations illustrate the theoretical results.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信