基于优化BP神经网络的S1和S2心音识别

Xue Chundong, Long Qinghua, Zhou Jing
{"title":"基于优化BP神经网络的S1和S2心音识别","authors":"Xue Chundong, Long Qinghua, Zhou Jing","doi":"10.1145/3340074.3340097","DOIUrl":null,"url":null,"abstract":"For the problems of Back Propagation(BP) neural network relying on initial weights, slowing convergence and easily falling into local extremum, the development ability of standard Artificial Bees Colony algorithm is weak, local search ability is poor, etc, propose an improved artificial bees colony algorithm to optimize BP neural network for fundamental heart sound(FHS) recognition. A novel improving following bees global search and probability selection algorithm, applying the optimized BP neural network to the FHS recognition is proposed. For the problems of heart sound contain noisy and Mel Frequency Cepstrum Coefficient(MFCC) feature parameters of heart sound signal are not effective under the condition of low signal-to-noise ratio(SNR). Propose an improved method to extract MFCC parameters, experimental results show that heart sound improved Mel Frequency Cepstrum Coefficient(IMFCC) feature is superior to MFCC and homomorphic envelope(Homo-Env) feature in the same case of classifier. In the same feature parameters, the improved Artificial Bees Colony algorithm optimization of BP neural network recognition accuracy has a greater degree of improvement, comparing with the classical BP, Random forest, support vector machine, k-Nearest Neighbor algorithm.","PeriodicalId":196396,"journal":{"name":"Proceedings of the 2019 11th International Conference on Bioinformatics and Biomedical Technology","volume":"15 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-05-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"S1 and S2 Heart Sound Recognition using Optimized BP Neural Network\",\"authors\":\"Xue Chundong, Long Qinghua, Zhou Jing\",\"doi\":\"10.1145/3340074.3340097\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"For the problems of Back Propagation(BP) neural network relying on initial weights, slowing convergence and easily falling into local extremum, the development ability of standard Artificial Bees Colony algorithm is weak, local search ability is poor, etc, propose an improved artificial bees colony algorithm to optimize BP neural network for fundamental heart sound(FHS) recognition. A novel improving following bees global search and probability selection algorithm, applying the optimized BP neural network to the FHS recognition is proposed. For the problems of heart sound contain noisy and Mel Frequency Cepstrum Coefficient(MFCC) feature parameters of heart sound signal are not effective under the condition of low signal-to-noise ratio(SNR). Propose an improved method to extract MFCC parameters, experimental results show that heart sound improved Mel Frequency Cepstrum Coefficient(IMFCC) feature is superior to MFCC and homomorphic envelope(Homo-Env) feature in the same case of classifier. In the same feature parameters, the improved Artificial Bees Colony algorithm optimization of BP neural network recognition accuracy has a greater degree of improvement, comparing with the classical BP, Random forest, support vector machine, k-Nearest Neighbor algorithm.\",\"PeriodicalId\":196396,\"journal\":{\"name\":\"Proceedings of the 2019 11th International Conference on Bioinformatics and Biomedical Technology\",\"volume\":\"15 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-05-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 2019 11th International Conference on Bioinformatics and Biomedical Technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3340074.3340097\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2019 11th International Conference on Bioinformatics and Biomedical Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3340074.3340097","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

针对BP神经网络依赖初始权值、收敛速度慢、易陷入局部极值、标准人工蜂群算法开发能力弱、局部搜索能力差等问题,提出一种改进的人工蜂群算法对BP神经网络进行优化,用于基础心音(FHS)识别。将优化后的BP神经网络应用于FHS识别,提出了一种改进的跟随蜂全局搜索和概率选择算法。针对心音信号中含有噪声和低频倒频谱系数(MFCC)的问题,在低信噪比条件下,心音信号的特征参数是无效的。提出了一种改进的MFCC参数提取方法,实验结果表明,在相同的分类器情况下,心音改进的Mel频率倒谱系数(IMFCC)特征优于MFCC和同态包络(Homo-Env)特征。在相同的特征参数下,与经典的BP、随机森林、支持向量机、k近邻算法相比,改进的人工蜂群算法优化后的BP神经网络识别精度有更大程度的提高。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
S1 and S2 Heart Sound Recognition using Optimized BP Neural Network
For the problems of Back Propagation(BP) neural network relying on initial weights, slowing convergence and easily falling into local extremum, the development ability of standard Artificial Bees Colony algorithm is weak, local search ability is poor, etc, propose an improved artificial bees colony algorithm to optimize BP neural network for fundamental heart sound(FHS) recognition. A novel improving following bees global search and probability selection algorithm, applying the optimized BP neural network to the FHS recognition is proposed. For the problems of heart sound contain noisy and Mel Frequency Cepstrum Coefficient(MFCC) feature parameters of heart sound signal are not effective under the condition of low signal-to-noise ratio(SNR). Propose an improved method to extract MFCC parameters, experimental results show that heart sound improved Mel Frequency Cepstrum Coefficient(IMFCC) feature is superior to MFCC and homomorphic envelope(Homo-Env) feature in the same case of classifier. In the same feature parameters, the improved Artificial Bees Colony algorithm optimization of BP neural network recognition accuracy has a greater degree of improvement, comparing with the classical BP, Random forest, support vector machine, k-Nearest Neighbor algorithm.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信