MADCAT阿拉伯语手写文档数据集的挑战与预处理建议

Gheith A. Abandah, Ahmad S. Ai-Hourani
{"title":"MADCAT阿拉伯语手写文档数据集的挑战与预处理建议","authors":"Gheith A. Abandah, Ahmad S. Ai-Hourani","doi":"10.1109/CISP-BMEI.2018.8633103","DOIUrl":null,"url":null,"abstract":"In this paper, we analyze the dataset often used in training and testing Arabic handwritten document recognition systems, the Multilingual Automatic Document Classification Analysis and Translation dataset (MADCAT). We report here the main challenges present in MADCAT that the preprocessing stage of any recognition algorithm faces and affect the performance of the systems that use it for training and testing. MADCAT is a representative dataset of Arabic handwritten documents and investigating its challenges helps to identify the requirements of the preprocessing stage. After presenting these challenges, we review the literature and recommend preprocessing algorithms suitable to preprocess this dataset for handwritten Arabic word recognition systems such as JU-OCR2.","PeriodicalId":117227,"journal":{"name":"2018 11th International Congress on Image and Signal Processing, BioMedical Engineering and Informatics (CISP-BMEI)","volume":"35 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Challenges and Preprocessing Recommendations for MADCAT Dataset of Handwritten Arabic Documents\",\"authors\":\"Gheith A. Abandah, Ahmad S. Ai-Hourani\",\"doi\":\"10.1109/CISP-BMEI.2018.8633103\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we analyze the dataset often used in training and testing Arabic handwritten document recognition systems, the Multilingual Automatic Document Classification Analysis and Translation dataset (MADCAT). We report here the main challenges present in MADCAT that the preprocessing stage of any recognition algorithm faces and affect the performance of the systems that use it for training and testing. MADCAT is a representative dataset of Arabic handwritten documents and investigating its challenges helps to identify the requirements of the preprocessing stage. After presenting these challenges, we review the literature and recommend preprocessing algorithms suitable to preprocess this dataset for handwritten Arabic word recognition systems such as JU-OCR2.\",\"PeriodicalId\":117227,\"journal\":{\"name\":\"2018 11th International Congress on Image and Signal Processing, BioMedical Engineering and Informatics (CISP-BMEI)\",\"volume\":\"35 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 11th International Congress on Image and Signal Processing, BioMedical Engineering and Informatics (CISP-BMEI)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CISP-BMEI.2018.8633103\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 11th International Congress on Image and Signal Processing, BioMedical Engineering and Informatics (CISP-BMEI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CISP-BMEI.2018.8633103","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

在本文中,我们分析了经常用于训练和测试阿拉伯手写文档识别系统的数据集,即多语言自动文档分类分析和翻译数据集(MADCAT)。我们在这里报告了MADCAT中存在的主要挑战,这些挑战是任何识别算法的预处理阶段所面临的,并会影响使用它进行训练和测试的系统的性能。MADCAT是阿拉伯语手写文档的代表性数据集,调查其挑战有助于确定预处理阶段的需求。在提出这些挑战之后,我们回顾了文献,并推荐了适用于手写阿拉伯语单词识别系统(如JU-OCR2)预处理该数据集的预处理算法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Challenges and Preprocessing Recommendations for MADCAT Dataset of Handwritten Arabic Documents
In this paper, we analyze the dataset often used in training and testing Arabic handwritten document recognition systems, the Multilingual Automatic Document Classification Analysis and Translation dataset (MADCAT). We report here the main challenges present in MADCAT that the preprocessing stage of any recognition algorithm faces and affect the performance of the systems that use it for training and testing. MADCAT is a representative dataset of Arabic handwritten documents and investigating its challenges helps to identify the requirements of the preprocessing stage. After presenting these challenges, we review the literature and recommend preprocessing algorithms suitable to preprocess this dataset for handwritten Arabic word recognition systems such as JU-OCR2.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信