基于指数变换的说话人自适应

Daniel Povey, G. Zweig, A. Acero
{"title":"基于指数变换的说话人自适应","authors":"Daniel Povey, G. Zweig, A. Acero","doi":"10.1109/ASRU.2011.6163923","DOIUrl":null,"url":null,"abstract":"In this paper we describe a linear transform that we call an Exponential Transform (ET), which integrates aspects of CMLLR, VTLN and STC/MLLT into a single transform with jointly trained components. Its main advantage is that a very small number of speaker-specific parameters is required, thus enabling effective adaptation with small amounts of speaker specific data. Our formulation shares some characteristics of Vocal Tract Length Normalization (VTLN), and is intended as a substitute for VTLN. The key part of the transform is controlled by a single speaker-specific parameter that is analogous to a VTLN warp factor. The transform has non-speaker-specific parameters that are learned from data, and we find that the axis along which male and female speakers differ is automatically learned. The exponential transform has no explicit notion of frequency warping, which makes it applicable in principle to non-standard features such as those derived from neural nets, or when the key axes may not be male-female. Based on our experiments with standard MFCC features, it appears to perform better than conventional VTLN.","PeriodicalId":338241,"journal":{"name":"2011 IEEE Workshop on Automatic Speech Recognition & Understanding","volume":"7 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":"{\"title\":\"Speaker adaptation with an Exponential Transform\",\"authors\":\"Daniel Povey, G. Zweig, A. Acero\",\"doi\":\"10.1109/ASRU.2011.6163923\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper we describe a linear transform that we call an Exponential Transform (ET), which integrates aspects of CMLLR, VTLN and STC/MLLT into a single transform with jointly trained components. Its main advantage is that a very small number of speaker-specific parameters is required, thus enabling effective adaptation with small amounts of speaker specific data. Our formulation shares some characteristics of Vocal Tract Length Normalization (VTLN), and is intended as a substitute for VTLN. The key part of the transform is controlled by a single speaker-specific parameter that is analogous to a VTLN warp factor. The transform has non-speaker-specific parameters that are learned from data, and we find that the axis along which male and female speakers differ is automatically learned. The exponential transform has no explicit notion of frequency warping, which makes it applicable in principle to non-standard features such as those derived from neural nets, or when the key axes may not be male-female. Based on our experiments with standard MFCC features, it appears to perform better than conventional VTLN.\",\"PeriodicalId\":338241,\"journal\":{\"name\":\"2011 IEEE Workshop on Automatic Speech Recognition & Understanding\",\"volume\":\"7 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2011 IEEE Workshop on Automatic Speech Recognition & Understanding\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ASRU.2011.6163923\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 IEEE Workshop on Automatic Speech Recognition & Understanding","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ASRU.2011.6163923","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

摘要

在本文中,我们描述了一个线性变换,我们称之为指数变换(ET),它将CMLLR, VTLN和STC/MLLT的各个方面集成到一个具有联合训练分量的单一变换中。它的主要优点是需要非常少的特定于说话人的参数,因此能够有效地适应少量特定于说话人的数据。我们的配方具有声道长度归一化(VTLN)的一些特征,并打算作为VTLN的替代品。转换的关键部分由单个特定于扬声器的参数控制,该参数类似于VTLN扭曲因子。转换具有从数据中学习的非特定于说话者的参数,我们发现男性和女性说话者的不同轴线是自动学习的。指数变换没有明确的频率扭曲的概念,这使得它原则上适用于非标准的特征,如来自神经网络的特征,或者当关键轴可能不是男-女时。基于我们对标准MFCC特征的实验,它似乎比传统的VTLN表现得更好。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Speaker adaptation with an Exponential Transform
In this paper we describe a linear transform that we call an Exponential Transform (ET), which integrates aspects of CMLLR, VTLN and STC/MLLT into a single transform with jointly trained components. Its main advantage is that a very small number of speaker-specific parameters is required, thus enabling effective adaptation with small amounts of speaker specific data. Our formulation shares some characteristics of Vocal Tract Length Normalization (VTLN), and is intended as a substitute for VTLN. The key part of the transform is controlled by a single speaker-specific parameter that is analogous to a VTLN warp factor. The transform has non-speaker-specific parameters that are learned from data, and we find that the axis along which male and female speakers differ is automatically learned. The exponential transform has no explicit notion of frequency warping, which makes it applicable in principle to non-standard features such as those derived from neural nets, or when the key axes may not be male-female. Based on our experiments with standard MFCC features, it appears to perform better than conventional VTLN.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信