{"title":"基于周期激活函数的多值神经元学习多值逻辑的非阈值函数","authors":"I. Aizenberg","doi":"10.1109/ISMVL.2010.15","DOIUrl":null,"url":null,"abstract":"In this paper, a theory of multiple-valued threshold functions over the field of complex numbers is further developed. k-valued threshold functions over the field of complex numbers can be learned using a single multi-valued neuron (MVN). We propose a new approach for the projection of a k-valued function, which is not a threshold one, to m-valued logic (m≫k), where this function becomes a partially defined m-valued threshold function and can be learned by a single MVN. To build this projection, a periodic activation function for the MVN is used. This new activation function and a modified learning algorithm make it possible to learn nonlinearly separable multiple-valued functions using a single MVN.","PeriodicalId":447743,"journal":{"name":"2010 40th IEEE International Symposium on Multiple-Valued Logic","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2010-05-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Learning of the Non-threshold Functions of Multiple-Valued Logic by a Single Multi-valued Neuron with a Periodic Activation Function\",\"authors\":\"I. Aizenberg\",\"doi\":\"10.1109/ISMVL.2010.15\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, a theory of multiple-valued threshold functions over the field of complex numbers is further developed. k-valued threshold functions over the field of complex numbers can be learned using a single multi-valued neuron (MVN). We propose a new approach for the projection of a k-valued function, which is not a threshold one, to m-valued logic (m≫k), where this function becomes a partially defined m-valued threshold function and can be learned by a single MVN. To build this projection, a periodic activation function for the MVN is used. This new activation function and a modified learning algorithm make it possible to learn nonlinearly separable multiple-valued functions using a single MVN.\",\"PeriodicalId\":447743,\"journal\":{\"name\":\"2010 40th IEEE International Symposium on Multiple-Valued Logic\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-05-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2010 40th IEEE International Symposium on Multiple-Valued Logic\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISMVL.2010.15\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 40th IEEE International Symposium on Multiple-Valued Logic","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISMVL.2010.15","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Learning of the Non-threshold Functions of Multiple-Valued Logic by a Single Multi-valued Neuron with a Periodic Activation Function
In this paper, a theory of multiple-valued threshold functions over the field of complex numbers is further developed. k-valued threshold functions over the field of complex numbers can be learned using a single multi-valued neuron (MVN). We propose a new approach for the projection of a k-valued function, which is not a threshold one, to m-valued logic (m≫k), where this function becomes a partially defined m-valued threshold function and can be learned by a single MVN. To build this projection, a periodic activation function for the MVN is used. This new activation function and a modified learning algorithm make it possible to learn nonlinearly separable multiple-valued functions using a single MVN.