基于周期激活函数的多值神经元学习多值逻辑的非阈值函数

I. Aizenberg
{"title":"基于周期激活函数的多值神经元学习多值逻辑的非阈值函数","authors":"I. Aizenberg","doi":"10.1109/ISMVL.2010.15","DOIUrl":null,"url":null,"abstract":"In this paper, a theory of multiple-valued threshold functions over the field of complex numbers is further developed. k-valued threshold functions over the field of complex numbers can be learned using a single multi-valued neuron (MVN). We propose a new approach for the projection of a k-valued function, which is not a threshold one, to m-valued logic (m≫k), where this function becomes a partially defined m-valued threshold function and can be learned by a single MVN. To build this projection, a periodic activation function for the MVN is used. This new activation function and a modified learning algorithm make it possible to learn nonlinearly separable multiple-valued functions using a single MVN.","PeriodicalId":447743,"journal":{"name":"2010 40th IEEE International Symposium on Multiple-Valued Logic","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2010-05-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Learning of the Non-threshold Functions of Multiple-Valued Logic by a Single Multi-valued Neuron with a Periodic Activation Function\",\"authors\":\"I. Aizenberg\",\"doi\":\"10.1109/ISMVL.2010.15\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, a theory of multiple-valued threshold functions over the field of complex numbers is further developed. k-valued threshold functions over the field of complex numbers can be learned using a single multi-valued neuron (MVN). We propose a new approach for the projection of a k-valued function, which is not a threshold one, to m-valued logic (m≫k), where this function becomes a partially defined m-valued threshold function and can be learned by a single MVN. To build this projection, a periodic activation function for the MVN is used. This new activation function and a modified learning algorithm make it possible to learn nonlinearly separable multiple-valued functions using a single MVN.\",\"PeriodicalId\":447743,\"journal\":{\"name\":\"2010 40th IEEE International Symposium on Multiple-Valued Logic\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-05-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2010 40th IEEE International Symposium on Multiple-Valued Logic\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISMVL.2010.15\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 40th IEEE International Symposium on Multiple-Valued Logic","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISMVL.2010.15","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

本文进一步发展了复数域上的多值阈值函数理论。复数域上的k值阈值函数可以使用单个多值神经元(MVN)来学习。我们提出了一种新的方法,将k值函数(不是阈值函数)投影到m值逻辑(m²k),其中该函数成为部分定义的m值阈值函数,并且可以通过单个MVN来学习。为了构建这个投影,我们使用了MVN的周期激活函数。这种新的激活函数和改进的学习算法使得使用单个MVN学习非线性可分多值函数成为可能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Learning of the Non-threshold Functions of Multiple-Valued Logic by a Single Multi-valued Neuron with a Periodic Activation Function
In this paper, a theory of multiple-valued threshold functions over the field of complex numbers is further developed. k-valued threshold functions over the field of complex numbers can be learned using a single multi-valued neuron (MVN). We propose a new approach for the projection of a k-valued function, which is not a threshold one, to m-valued logic (m≫k), where this function becomes a partially defined m-valued threshold function and can be learned by a single MVN. To build this projection, a periodic activation function for the MVN is used. This new activation function and a modified learning algorithm make it possible to learn nonlinearly separable multiple-valued functions using a single MVN.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信