Atthasak Kiang-Ia, Sathid Rukkhong, T. Srivongsa, Kittipong Kasantikul, Chalinee Thanasupsombat, S. Aootaphao, S. Thongvigitmanee
{"title":"微型锥束CT机的控制系统","authors":"Atthasak Kiang-Ia, Sathid Rukkhong, T. Srivongsa, Kittipong Kasantikul, Chalinee Thanasupsombat, S. Aootaphao, S. Thongvigitmanee","doi":"10.1109/BMEiCON56653.2022.10012087","DOIUrl":null,"url":null,"abstract":"Images data from the micro cone-beam computed tomography (CBCT) are acquired from a rotation of an object located between an X-ray generator and a flat panel detector; therefore, the rotational position of the motor is very important for image quality of 3D cross-section images. This study focuses on designing the position control of the stepping motor using the motion module, which enhances the control 4-axis motor’s efficiency to optimize and increase the accuracy of motor movement. We designed the stepping motor position control system to control the movement of the micro CBCT system to perform ten circular rotations in a single scanning process. A phantom was used to verify the rotational image accuracy by considering the image at the same position each round. Comparison of the motor movement with and without the motion module showed slight differences of projection images causing artifacts in cross-section images. Thus, the design of the rotation position control using the motion module circuit yielded good performance in terms of precision and rotational accuracy on the CBCT.","PeriodicalId":177401,"journal":{"name":"2022 14th Biomedical Engineering International Conference (BMEiCON)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-11-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A control system in a micro cone-beam CT machine\",\"authors\":\"Atthasak Kiang-Ia, Sathid Rukkhong, T. Srivongsa, Kittipong Kasantikul, Chalinee Thanasupsombat, S. Aootaphao, S. Thongvigitmanee\",\"doi\":\"10.1109/BMEiCON56653.2022.10012087\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Images data from the micro cone-beam computed tomography (CBCT) are acquired from a rotation of an object located between an X-ray generator and a flat panel detector; therefore, the rotational position of the motor is very important for image quality of 3D cross-section images. This study focuses on designing the position control of the stepping motor using the motion module, which enhances the control 4-axis motor’s efficiency to optimize and increase the accuracy of motor movement. We designed the stepping motor position control system to control the movement of the micro CBCT system to perform ten circular rotations in a single scanning process. A phantom was used to verify the rotational image accuracy by considering the image at the same position each round. Comparison of the motor movement with and without the motion module showed slight differences of projection images causing artifacts in cross-section images. Thus, the design of the rotation position control using the motion module circuit yielded good performance in terms of precision and rotational accuracy on the CBCT.\",\"PeriodicalId\":177401,\"journal\":{\"name\":\"2022 14th Biomedical Engineering International Conference (BMEiCON)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-11-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 14th Biomedical Engineering International Conference (BMEiCON)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/BMEiCON56653.2022.10012087\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 14th Biomedical Engineering International Conference (BMEiCON)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/BMEiCON56653.2022.10012087","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Images data from the micro cone-beam computed tomography (CBCT) are acquired from a rotation of an object located between an X-ray generator and a flat panel detector; therefore, the rotational position of the motor is very important for image quality of 3D cross-section images. This study focuses on designing the position control of the stepping motor using the motion module, which enhances the control 4-axis motor’s efficiency to optimize and increase the accuracy of motor movement. We designed the stepping motor position control system to control the movement of the micro CBCT system to perform ten circular rotations in a single scanning process. A phantom was used to verify the rotational image accuracy by considering the image at the same position each round. Comparison of the motor movement with and without the motion module showed slight differences of projection images causing artifacts in cross-section images. Thus, the design of the rotation position control using the motion module circuit yielded good performance in terms of precision and rotational accuracy on the CBCT.