用于增强对比度光学相干断层扫描的纳米颗粒

C. Maule, P. Quaresma, P. Carvalho, P. Jorge, E. Pereira, C. Rosa
{"title":"用于增强对比度光学相干断层扫描的纳米颗粒","authors":"C. Maule, P. Quaresma, P. Carvalho, P. Jorge, E. Pereira, C. Rosa","doi":"10.1117/12.818690","DOIUrl":null,"url":null,"abstract":"Recently the area of bioimaging has benefited from new types of image enhancing agents such as quantum dots, carbon nanotubes and other nanoparticles. Cellular or even molecular level resolution has been achieved with different techniques during these last years (i.a. Fluorescence microscopy, PET/CT scan, AFM). Optical Coherence Tomography (OCT) as an imaging technique should also profit from newly developed probes. In this work we explored the tunable properties of different types of nanoparticles as contrast enhancers in OCT applications. We mainly studied the development and characteristics of metallic nanoparticles with tunable properties: gold nanoshells made of a silica core coated with a gold shell. Nanoshell and nanoparticles processing techniques are discussed, as well as their optimization for designing particles with specific absorption and scattering characteristics, and its use in OCT imaging.","PeriodicalId":184459,"journal":{"name":"Canterbury Workshop and School in Optical Coherence Tomography and Adaptive Optics","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Nanoparticles for enhanced contrast optical coherence tomography\",\"authors\":\"C. Maule, P. Quaresma, P. Carvalho, P. Jorge, E. Pereira, C. Rosa\",\"doi\":\"10.1117/12.818690\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Recently the area of bioimaging has benefited from new types of image enhancing agents such as quantum dots, carbon nanotubes and other nanoparticles. Cellular or even molecular level resolution has been achieved with different techniques during these last years (i.a. Fluorescence microscopy, PET/CT scan, AFM). Optical Coherence Tomography (OCT) as an imaging technique should also profit from newly developed probes. In this work we explored the tunable properties of different types of nanoparticles as contrast enhancers in OCT applications. We mainly studied the development and characteristics of metallic nanoparticles with tunable properties: gold nanoshells made of a silica core coated with a gold shell. Nanoshell and nanoparticles processing techniques are discussed, as well as their optimization for designing particles with specific absorption and scattering characteristics, and its use in OCT imaging.\",\"PeriodicalId\":184459,\"journal\":{\"name\":\"Canterbury Workshop and School in Optical Coherence Tomography and Adaptive Optics\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2008-09-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Canterbury Workshop and School in Optical Coherence Tomography and Adaptive Optics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1117/12.818690\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Canterbury Workshop and School in Optical Coherence Tomography and Adaptive Optics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1117/12.818690","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

最近,生物成像领域受益于新型图像增强剂,如量子点、碳纳米管和其他纳米颗粒。在过去的几年里,细胞甚至分子水平的分辨率已经通过不同的技术(如荧光显微镜,PET/CT扫描,AFM)实现了。光学相干层析成像(OCT)作为一种成像技术也将受益于新开发的探针。在这项工作中,我们探索了不同类型的纳米颗粒作为OCT应用中的对比度增强剂的可调特性。我们主要研究了具有可调谐性能的金属纳米粒子的发展和特性:由二氧化硅核包覆金壳制成的金纳米壳。讨论了纳米壳和纳米颗粒的加工技术,以及它们在设计具有特定吸收和散射特性的颗粒方面的优化,以及它们在OCT成像中的应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Nanoparticles for enhanced contrast optical coherence tomography
Recently the area of bioimaging has benefited from new types of image enhancing agents such as quantum dots, carbon nanotubes and other nanoparticles. Cellular or even molecular level resolution has been achieved with different techniques during these last years (i.a. Fluorescence microscopy, PET/CT scan, AFM). Optical Coherence Tomography (OCT) as an imaging technique should also profit from newly developed probes. In this work we explored the tunable properties of different types of nanoparticles as contrast enhancers in OCT applications. We mainly studied the development and characteristics of metallic nanoparticles with tunable properties: gold nanoshells made of a silica core coated with a gold shell. Nanoshell and nanoparticles processing techniques are discussed, as well as their optimization for designing particles with specific absorption and scattering characteristics, and its use in OCT imaging.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信