利用卷积神经网络进行水下三维物体重构以估算鱼体长度

Naomi Ubiña, Sin-Yi Cai, Shyi-Chyi Cheng, Chin-Chun Chang, Yi-Zeng Hsieh
{"title":"利用卷积神经网络进行水下三维物体重构以估算鱼体长度","authors":"Naomi Ubiña, Sin-Yi Cai, Shyi-Chyi Cheng, Chin-Chun Chang, Yi-Zeng Hsieh","doi":"10.1109/ISPACS51563.2021.9651057","DOIUrl":null,"url":null,"abstract":"The challenge in stereo matching for underwater 3D object modeling is to compute dense depth data with the minimal smoothness at high frame rate. To address this issue, in this paper we propose an object based stereo matching for underwater 3D fish reconstruction using convolutional neural networks (CNNs). For each image in a stereo frame, an instance segmentation CNN is used to segment fish objects from the background. The set of fish objects in the left image is matched against those in the right to detect the object pairs using the proposed support-weights approach. For each pair, the common disparity value is then computed. Next, fish objects in these images are cropped and matched to do the pixel-wise residual disparity computation using the video interpolation CNN. The computed fish disparities and depth values are finally used to estimate the sizes of fish. Instead of estimating the fish length using a single frame, we track each fish across frames of the input stereo video to compute the fish length frame by frame. The mean fish length is finally computed as the result. An underwater dataset with the fish actual length measured by human is constructed to verify the effectiveness of our approach. Experimental results show that the error rate of the proposed approach is less than 6%.","PeriodicalId":359822,"journal":{"name":"2021 International Symposium on Intelligent Signal Processing and Communication Systems (ISPACS)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-11-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Underwater 3D Object Reconstruction for Fish Length Estimation Using Convolutional Neural Networks\",\"authors\":\"Naomi Ubiña, Sin-Yi Cai, Shyi-Chyi Cheng, Chin-Chun Chang, Yi-Zeng Hsieh\",\"doi\":\"10.1109/ISPACS51563.2021.9651057\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The challenge in stereo matching for underwater 3D object modeling is to compute dense depth data with the minimal smoothness at high frame rate. To address this issue, in this paper we propose an object based stereo matching for underwater 3D fish reconstruction using convolutional neural networks (CNNs). For each image in a stereo frame, an instance segmentation CNN is used to segment fish objects from the background. The set of fish objects in the left image is matched against those in the right to detect the object pairs using the proposed support-weights approach. For each pair, the common disparity value is then computed. Next, fish objects in these images are cropped and matched to do the pixel-wise residual disparity computation using the video interpolation CNN. The computed fish disparities and depth values are finally used to estimate the sizes of fish. Instead of estimating the fish length using a single frame, we track each fish across frames of the input stereo video to compute the fish length frame by frame. The mean fish length is finally computed as the result. An underwater dataset with the fish actual length measured by human is constructed to verify the effectiveness of our approach. Experimental results show that the error rate of the proposed approach is less than 6%.\",\"PeriodicalId\":359822,\"journal\":{\"name\":\"2021 International Symposium on Intelligent Signal Processing and Communication Systems (ISPACS)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-11-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 International Symposium on Intelligent Signal Processing and Communication Systems (ISPACS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISPACS51563.2021.9651057\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 International Symposium on Intelligent Signal Processing and Communication Systems (ISPACS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISPACS51563.2021.9651057","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

用于水下三维物体建模的立体匹配所面临的挑战是如何在高帧频下以最小的平滑度计算密集的深度数据。为解决这一问题,我们在本文中提出了一种基于物体的立体匹配方法,利用卷积神经网络(CNN)进行水下三维鱼类重建。对于立体帧中的每幅图像,使用实例分割 CNN 将鱼类物体从背景中分割出来。将左侧图像中的鱼类对象集与右侧图像中的鱼类对象集进行匹配,利用建议的支持权重方法检测对象对。然后计算每对图像的共同差异值。然后,对这些图像中的鱼类对象进行裁剪和匹配,利用视频插值 CNN 进行像素级残差计算。最后,利用计算出的鱼类差异和深度值来估算鱼类的大小。我们不使用单帧估计鱼的长度,而是在输入立体视频的各帧中跟踪每条鱼,逐帧计算鱼的长度。最后计算出鱼的平均长度。为了验证我们方法的有效性,我们构建了一个由人类测量鱼类实际长度的水下数据集。实验结果表明,建议方法的误差率低于 6%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Underwater 3D Object Reconstruction for Fish Length Estimation Using Convolutional Neural Networks
The challenge in stereo matching for underwater 3D object modeling is to compute dense depth data with the minimal smoothness at high frame rate. To address this issue, in this paper we propose an object based stereo matching for underwater 3D fish reconstruction using convolutional neural networks (CNNs). For each image in a stereo frame, an instance segmentation CNN is used to segment fish objects from the background. The set of fish objects in the left image is matched against those in the right to detect the object pairs using the proposed support-weights approach. For each pair, the common disparity value is then computed. Next, fish objects in these images are cropped and matched to do the pixel-wise residual disparity computation using the video interpolation CNN. The computed fish disparities and depth values are finally used to estimate the sizes of fish. Instead of estimating the fish length using a single frame, we track each fish across frames of the input stereo video to compute the fish length frame by frame. The mean fish length is finally computed as the result. An underwater dataset with the fish actual length measured by human is constructed to verify the effectiveness of our approach. Experimental results show that the error rate of the proposed approach is less than 6%.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信