{"title":"催化的电化学促进","authors":"Vayenas Constantinos G","doi":"10.29328/journal.aac.1001031","DOIUrl":null,"url":null,"abstract":"The Electrochemical Promotion of Catalysis (EPOC) or Non-Faradaic Electrochemical Promotion of Catalysis (NEMCA effect) is a phenomenon observed as a reversible change in catalytic rate (i.e. no net charge transfer rate) of a chemical reaction occurring on a catalyst film (or supported dispersed catalyst) deposited on an ionically conducting or mixed electronically-ionically conducting solid electrolyte support upon the application of an electrical potential between the catalyst and a second conductive film deposited on the solid electrolyte support.","PeriodicalId":285422,"journal":{"name":"Annals of Advances in Chemistry","volume":"16 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-09-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Electrochemical promotion of catalysis\",\"authors\":\"Vayenas Constantinos G\",\"doi\":\"10.29328/journal.aac.1001031\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The Electrochemical Promotion of Catalysis (EPOC) or Non-Faradaic Electrochemical Promotion of Catalysis (NEMCA effect) is a phenomenon observed as a reversible change in catalytic rate (i.e. no net charge transfer rate) of a chemical reaction occurring on a catalyst film (or supported dispersed catalyst) deposited on an ionically conducting or mixed electronically-ionically conducting solid electrolyte support upon the application of an electrical potential between the catalyst and a second conductive film deposited on the solid electrolyte support.\",\"PeriodicalId\":285422,\"journal\":{\"name\":\"Annals of Advances in Chemistry\",\"volume\":\"16 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-09-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annals of Advances in Chemistry\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.29328/journal.aac.1001031\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annals of Advances in Chemistry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.29328/journal.aac.1001031","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
The Electrochemical Promotion of Catalysis (EPOC) or Non-Faradaic Electrochemical Promotion of Catalysis (NEMCA effect) is a phenomenon observed as a reversible change in catalytic rate (i.e. no net charge transfer rate) of a chemical reaction occurring on a catalyst film (or supported dispersed catalyst) deposited on an ionically conducting or mixed electronically-ionically conducting solid electrolyte support upon the application of an electrical potential between the catalyst and a second conductive film deposited on the solid electrolyte support.