基于背景对比和轨迹优化的DeepCC跟踪器性能改进

Kuan-Hsien Wu, Wan-Lun Tsai, Tse-Yu Pan, Min-Chun Hu
{"title":"基于背景对比和轨迹优化的DeepCC跟踪器性能改进","authors":"Kuan-Hsien Wu, Wan-Lun Tsai, Tse-Yu Pan, Min-Chun Hu","doi":"10.1109/Ubi-Media.2019.00042","DOIUrl":null,"url":null,"abstract":"DukeMTMCT is the largest and most completely labeled dataset in Multi-Target Multi-Camera Tracking (MTMCT). We investigate a state-of-the-art work on DukeMTMCT named DeepCC, and dig out two main problems. The first problem is that the openpose is prone to false detection, which seriously affects performance. The second problem is that two different persons may be assigned with the same ID. According to the corresponding problems, we not only propose a method to measure the similarity between detected bounding box and its original background avoiding false detection caused by OpenPose, but also design a strategy to correct the tracking trajectories which are affected by the unreliability of the correlation matrix clustering method proposed by DeepCC. Our method outperforms the state-of-the-art on DukeMTMCT.","PeriodicalId":259542,"journal":{"name":"2019 Twelfth International Conference on Ubi-Media Computing (Ubi-Media)","volume":"4 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Improving Performance of DeepCC Tracker by Background Comparison and Trajectory Refinement\",\"authors\":\"Kuan-Hsien Wu, Wan-Lun Tsai, Tse-Yu Pan, Min-Chun Hu\",\"doi\":\"10.1109/Ubi-Media.2019.00042\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"DukeMTMCT is the largest and most completely labeled dataset in Multi-Target Multi-Camera Tracking (MTMCT). We investigate a state-of-the-art work on DukeMTMCT named DeepCC, and dig out two main problems. The first problem is that the openpose is prone to false detection, which seriously affects performance. The second problem is that two different persons may be assigned with the same ID. According to the corresponding problems, we not only propose a method to measure the similarity between detected bounding box and its original background avoiding false detection caused by OpenPose, but also design a strategy to correct the tracking trajectories which are affected by the unreliability of the correlation matrix clustering method proposed by DeepCC. Our method outperforms the state-of-the-art on DukeMTMCT.\",\"PeriodicalId\":259542,\"journal\":{\"name\":\"2019 Twelfth International Conference on Ubi-Media Computing (Ubi-Media)\",\"volume\":\"4 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 Twelfth International Conference on Ubi-Media Computing (Ubi-Media)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/Ubi-Media.2019.00042\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 Twelfth International Conference on Ubi-Media Computing (Ubi-Media)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/Ubi-Media.2019.00042","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

DukeMTMCT是多目标多相机跟踪(MTMCT)中最大、标记最完整的数据集。我们调查了DukeMTMCT上一个名为DeepCC的最先进的工作,并发现了两个主要问题。第一个问题是,openpose容易出现误检测,严重影响性能。第二个问题是两个不同的人可能被分配相同的ID。针对相应的问题,我们不仅提出了一种测量检测到的边界框与其原始背景之间相似度的方法,避免了OpenPose导致的误检,而且设计了一种策略来纠正DeepCC提出的相关矩阵聚类方法的不可靠性对跟踪轨迹的影响。我们的方法在DukeMTMCT上优于最先进的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Improving Performance of DeepCC Tracker by Background Comparison and Trajectory Refinement
DukeMTMCT is the largest and most completely labeled dataset in Multi-Target Multi-Camera Tracking (MTMCT). We investigate a state-of-the-art work on DukeMTMCT named DeepCC, and dig out two main problems. The first problem is that the openpose is prone to false detection, which seriously affects performance. The second problem is that two different persons may be assigned with the same ID. According to the corresponding problems, we not only propose a method to measure the similarity between detected bounding box and its original background avoiding false detection caused by OpenPose, but also design a strategy to correct the tracking trajectories which are affected by the unreliability of the correlation matrix clustering method proposed by DeepCC. Our method outperforms the state-of-the-art on DukeMTMCT.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信