基于盲隐写分析的数字图像描述符预测分析,用于随机森林和SqueezeNet的数字取证

Wasiu Akanji, O. Okey, Saheed Adelanwa, Oluwafunsho Odesanya, T. Olaleye, Mary Amusu, Akinfolarin Akinrinlola, Abiodun Oladejo
{"title":"基于盲隐写分析的数字图像描述符预测分析,用于随机森林和SqueezeNet的数字取证","authors":"Wasiu Akanji, O. Okey, Saheed Adelanwa, Oluwafunsho Odesanya, T. Olaleye, Mary Amusu, Akinfolarin Akinrinlola, Abiodun Oladejo","doi":"10.1109/ITED56637.2022.10051337","DOIUrl":null,"url":null,"abstract":"Image steganalysis have been a prominent study in digital forensics and the data science use case of artificial intelligence has been widely adopted in conceptual frameworks. In existing studies, deep learners gain prominence for intrusion detection systems while other dissimilar modules are used for feature extraction. Hence, this study rather employs deep learners as image embedding networks aimed at feature extraction for a predictive analytics of image steganalysis. The extracted numeric image descriptors trains three learner algorithms for pattern recognition using a 10 fold cross-validation system. Experimental result indicates the ensemble of Random forest algorithm and SqueezeNet image embedder as the best for steganalysis in digital forensics while the size of the training set turns out to be insignificant for the supervised machine learning study.","PeriodicalId":246041,"journal":{"name":"2022 5th Information Technology for Education and Development (ITED)","volume":"11 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A blind steganalysis-based predictive analytics of numeric image descriptors for digital forensics with Random Forest & SqueezeNet\",\"authors\":\"Wasiu Akanji, O. Okey, Saheed Adelanwa, Oluwafunsho Odesanya, T. Olaleye, Mary Amusu, Akinfolarin Akinrinlola, Abiodun Oladejo\",\"doi\":\"10.1109/ITED56637.2022.10051337\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Image steganalysis have been a prominent study in digital forensics and the data science use case of artificial intelligence has been widely adopted in conceptual frameworks. In existing studies, deep learners gain prominence for intrusion detection systems while other dissimilar modules are used for feature extraction. Hence, this study rather employs deep learners as image embedding networks aimed at feature extraction for a predictive analytics of image steganalysis. The extracted numeric image descriptors trains three learner algorithms for pattern recognition using a 10 fold cross-validation system. Experimental result indicates the ensemble of Random forest algorithm and SqueezeNet image embedder as the best for steganalysis in digital forensics while the size of the training set turns out to be insignificant for the supervised machine learning study.\",\"PeriodicalId\":246041,\"journal\":{\"name\":\"2022 5th Information Technology for Education and Development (ITED)\",\"volume\":\"11 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 5th Information Technology for Education and Development (ITED)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ITED56637.2022.10051337\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 5th Information Technology for Education and Development (ITED)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ITED56637.2022.10051337","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

图像隐写分析一直是数字取证领域的一个突出研究,人工智能的数据科学用例已被广泛采用于概念框架中。在现有的研究中,深度学习在入侵检测系统中得到了突出的地位,而其他不同的模块则用于特征提取。因此,本研究采用深度学习者作为图像嵌入网络,旨在为图像隐写分析的预测分析提取特征。提取的数字图像描述符使用10倍交叉验证系统训练三种用于模式识别的学习算法。实验结果表明,随机森林算法和SqueezeNet图像嵌入器的集成是数字取证中隐写分析的最佳算法,而训练集的大小对于有监督机器学习研究来说是不重要的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A blind steganalysis-based predictive analytics of numeric image descriptors for digital forensics with Random Forest & SqueezeNet
Image steganalysis have been a prominent study in digital forensics and the data science use case of artificial intelligence has been widely adopted in conceptual frameworks. In existing studies, deep learners gain prominence for intrusion detection systems while other dissimilar modules are used for feature extraction. Hence, this study rather employs deep learners as image embedding networks aimed at feature extraction for a predictive analytics of image steganalysis. The extracted numeric image descriptors trains three learner algorithms for pattern recognition using a 10 fold cross-validation system. Experimental result indicates the ensemble of Random forest algorithm and SqueezeNet image embedder as the best for steganalysis in digital forensics while the size of the training set turns out to be insignificant for the supervised machine learning study.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信