任意非阿基米德域上相对体积的可微性

S. Boucksom, Walter Gubler, Florent Martin
{"title":"任意非阿基米德域上相对体积的可微性","authors":"S. Boucksom, Walter Gubler, Florent Martin","doi":"10.1093/imrn/rnaa314","DOIUrl":null,"url":null,"abstract":"Given an ample line bundle $L$ on a geometrically reduced projective scheme defined over an arbitrary non-Archimedean field, we establish a differentiability property for the relative volume of two continuous metrics on the Berkovich analytification of $L$, extending previously known results in the discretely valued case. As applications, we provide fundamental solutions to certain non-Archimedean Monge--Ampere equations, and generalize an equidistribution result for Fekete points. Our main technical input comes from determinant of cohomology and Deligne pairings.","PeriodicalId":278201,"journal":{"name":"arXiv: Algebraic Geometry","volume":"64 3 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-04-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"Differentiability of Relative Volumes Over an Arbitrary Non-Archimedean Field\",\"authors\":\"S. Boucksom, Walter Gubler, Florent Martin\",\"doi\":\"10.1093/imrn/rnaa314\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Given an ample line bundle $L$ on a geometrically reduced projective scheme defined over an arbitrary non-Archimedean field, we establish a differentiability property for the relative volume of two continuous metrics on the Berkovich analytification of $L$, extending previously known results in the discretely valued case. As applications, we provide fundamental solutions to certain non-Archimedean Monge--Ampere equations, and generalize an equidistribution result for Fekete points. Our main technical input comes from determinant of cohomology and Deligne pairings.\",\"PeriodicalId\":278201,\"journal\":{\"name\":\"arXiv: Algebraic Geometry\",\"volume\":\"64 3 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-04-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv: Algebraic Geometry\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1093/imrn/rnaa314\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Algebraic Geometry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/imrn/rnaa314","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

摘要

给出了在任意非阿基米德域上定义的几何简化投影格式上的一个充足的线束$L$,我们在$L$的Berkovich分析上建立了两个连续度量的相对体积的可微性,推广了先前在离散值情况下的已知结果。作为应用,我们给出了一类非阿基米德蒙日—安培方程的基本解,并推广了Fekete点的一个等分布结果。我们的主要技术投入来自于上同源和德列涅对的行列式。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Differentiability of Relative Volumes Over an Arbitrary Non-Archimedean Field
Given an ample line bundle $L$ on a geometrically reduced projective scheme defined over an arbitrary non-Archimedean field, we establish a differentiability property for the relative volume of two continuous metrics on the Berkovich analytification of $L$, extending previously known results in the discretely valued case. As applications, we provide fundamental solutions to certain non-Archimedean Monge--Ampere equations, and generalize an equidistribution result for Fekete points. Our main technical input comes from determinant of cohomology and Deligne pairings.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信