信用风险分析的无限决策代理集成学习系统

Shukai Li, I. Tsang, N. Chaudhari
{"title":"信用风险分析的无限决策代理集成学习系统","authors":"Shukai Li, I. Tsang, N. Chaudhari","doi":"10.1109/ICMLA.2011.80","DOIUrl":null,"url":null,"abstract":"Considering the special needs of credit risk analysis, the Infinite DEcision Agent ensemble Learning (IDEAL) system is proposed. In the first level of our model, we adopt soft margin boosting to overcome over fitting. In the second level, the RVM algorithm is revised for boosting so that different RVM agents can be generated from the updated instance space of the data. In the third level, the perceptron kernel is employed in RVM to generate infinite subagents. Our IDEAL system also shares some good properties, such as good generalization performance, immunity to over fitting and predicting the distance to default. According to the experimental results, our proposed system can achieve better performance in term of sensitivity, specificity and overall accuracy.","PeriodicalId":439926,"journal":{"name":"2011 10th International Conference on Machine Learning and Applications and Workshops","volume":"23 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-12-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Infinite Decision Agent Ensemble Learning System for Credit Risk Analysis\",\"authors\":\"Shukai Li, I. Tsang, N. Chaudhari\",\"doi\":\"10.1109/ICMLA.2011.80\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Considering the special needs of credit risk analysis, the Infinite DEcision Agent ensemble Learning (IDEAL) system is proposed. In the first level of our model, we adopt soft margin boosting to overcome over fitting. In the second level, the RVM algorithm is revised for boosting so that different RVM agents can be generated from the updated instance space of the data. In the third level, the perceptron kernel is employed in RVM to generate infinite subagents. Our IDEAL system also shares some good properties, such as good generalization performance, immunity to over fitting and predicting the distance to default. According to the experimental results, our proposed system can achieve better performance in term of sensitivity, specificity and overall accuracy.\",\"PeriodicalId\":439926,\"journal\":{\"name\":\"2011 10th International Conference on Machine Learning and Applications and Workshops\",\"volume\":\"23 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-12-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2011 10th International Conference on Machine Learning and Applications and Workshops\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICMLA.2011.80\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 10th International Conference on Machine Learning and Applications and Workshops","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICMLA.2011.80","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

考虑到信用风险分析的特殊需要,提出了无限决策代理集成学习(IDEAL)系统。在模型的第一级,我们采用软边际增强来克服过拟合。在第二级,修改RVM算法以进行提升,以便可以从更新的数据实例空间生成不同的RVM代理。第三层,在RVM中使用感知机内核生成无限个子代理。我们的IDEAL系统还具有良好的泛化性能、抗过拟合能力和预测违约距离等特性。实验结果表明,本文提出的系统在灵敏度、特异度和整体准确度方面都取得了较好的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Infinite Decision Agent Ensemble Learning System for Credit Risk Analysis
Considering the special needs of credit risk analysis, the Infinite DEcision Agent ensemble Learning (IDEAL) system is proposed. In the first level of our model, we adopt soft margin boosting to overcome over fitting. In the second level, the RVM algorithm is revised for boosting so that different RVM agents can be generated from the updated instance space of the data. In the third level, the perceptron kernel is employed in RVM to generate infinite subagents. Our IDEAL system also shares some good properties, such as good generalization performance, immunity to over fitting and predicting the distance to default. According to the experimental results, our proposed system can achieve better performance in term of sensitivity, specificity and overall accuracy.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信