基于遗传规划的双种群差异进化参数自适应自动设计

V. Stanovov, E. Semenkin
{"title":"基于遗传规划的双种群差异进化参数自适应自动设计","authors":"V. Stanovov, E. Semenkin","doi":"10.1145/3583133.3596310","DOIUrl":null,"url":null,"abstract":"The parameter adaptation is one of the main problems in many evolutionary algorithms, including differential evolution. Instead of manual development of new methods, a hyper-heuristic approach can be used, where an algorithm is applied to search for parameter adaptation scheme. In this study the symbolic regression genetic programming is applied to design parameter adaptation method for differential evolution algorithm with two populations L-NTADE. Due to algorithmic scheme different from popular L-SHADE, the L-NTADE may require specific adaptation mechanisms. Each solution in genetic programming consists of three trees, which generate scaling factor values based on current resource, success rate and current values in the memory cells, containing scaling factor and crossover rate. The training is performed on a set of 30 benchmark functions from CEC 2017 competition on numerical optimization, and at every generation of genetic programming new problem dimension, computational resource, optima location and rotation matrices are generated for every test function. The testing is performed on two benchmarks, CEC 2017 and CEC/GECCO 2022. The results comparison shows that the automatically designed parameter adaptation heuristics are capable of outperforming the success-history adaptation in many cases, including high-dimensional problems and problems with different computational resource.","PeriodicalId":422029,"journal":{"name":"Proceedings of the Companion Conference on Genetic and Evolutionary Computation","volume":"131 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-07-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Genetic Programming for Automatic Design of Parameter Adaptation in Dual-Population Differential Evolution\",\"authors\":\"V. Stanovov, E. Semenkin\",\"doi\":\"10.1145/3583133.3596310\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The parameter adaptation is one of the main problems in many evolutionary algorithms, including differential evolution. Instead of manual development of new methods, a hyper-heuristic approach can be used, where an algorithm is applied to search for parameter adaptation scheme. In this study the symbolic regression genetic programming is applied to design parameter adaptation method for differential evolution algorithm with two populations L-NTADE. Due to algorithmic scheme different from popular L-SHADE, the L-NTADE may require specific adaptation mechanisms. Each solution in genetic programming consists of three trees, which generate scaling factor values based on current resource, success rate and current values in the memory cells, containing scaling factor and crossover rate. The training is performed on a set of 30 benchmark functions from CEC 2017 competition on numerical optimization, and at every generation of genetic programming new problem dimension, computational resource, optima location and rotation matrices are generated for every test function. The testing is performed on two benchmarks, CEC 2017 and CEC/GECCO 2022. The results comparison shows that the automatically designed parameter adaptation heuristics are capable of outperforming the success-history adaptation in many cases, including high-dimensional problems and problems with different computational resource.\",\"PeriodicalId\":422029,\"journal\":{\"name\":\"Proceedings of the Companion Conference on Genetic and Evolutionary Computation\",\"volume\":\"131 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-07-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the Companion Conference on Genetic and Evolutionary Computation\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3583133.3596310\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Companion Conference on Genetic and Evolutionary Computation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3583133.3596310","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

参数自适应是包括差分进化在内的许多进化算法的主要问题之一。代替人工开发新方法,可以使用超启发式方法,其中应用算法搜索参数自适应方案。本文将符号回归遗传规划应用于两种群L-NTADE差分进化算法的参数自适应设计。由于算法方案不同于流行的L-SHADE, L-NTADE可能需要特定的适应机制。遗传规划中的每个解由三棵树组成,树根据当前资源、成功率和存储单元中的当前值生成比例因子值,其中包含比例因子和交叉率。在CEC 2017数值优化竞赛的30个基准函数集上进行训练,每一代遗传规划都会为每个测试函数生成新的问题维数、计算资源、最优位置矩阵和旋转矩阵。测试在两个基准上进行,CEC 2017和CEC/GECCO 2022。结果比较表明,自动设计的参数自适应启发式算法在许多情况下,包括高维问题和具有不同计算资源的问题,都能优于成功历史自适应算法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Genetic Programming for Automatic Design of Parameter Adaptation in Dual-Population Differential Evolution
The parameter adaptation is one of the main problems in many evolutionary algorithms, including differential evolution. Instead of manual development of new methods, a hyper-heuristic approach can be used, where an algorithm is applied to search for parameter adaptation scheme. In this study the symbolic regression genetic programming is applied to design parameter adaptation method for differential evolution algorithm with two populations L-NTADE. Due to algorithmic scheme different from popular L-SHADE, the L-NTADE may require specific adaptation mechanisms. Each solution in genetic programming consists of three trees, which generate scaling factor values based on current resource, success rate and current values in the memory cells, containing scaling factor and crossover rate. The training is performed on a set of 30 benchmark functions from CEC 2017 competition on numerical optimization, and at every generation of genetic programming new problem dimension, computational resource, optima location and rotation matrices are generated for every test function. The testing is performed on two benchmarks, CEC 2017 and CEC/GECCO 2022. The results comparison shows that the automatically designed parameter adaptation heuristics are capable of outperforming the success-history adaptation in many cases, including high-dimensional problems and problems with different computational resource.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信