遗传算法在异步电动机速度估计中的应用

Li Cai, Yinhai Zhang, Zhongchao Zhang, Chenyang Liu, Zheng-yu Lu
{"title":"遗传算法在异步电动机速度估计中的应用","authors":"Li Cai, Yinhai Zhang, Zhongchao Zhang, Chenyang Liu, Zheng-yu Lu","doi":"10.1109/PESC.2003.1218317","DOIUrl":null,"url":null,"abstract":"Genetic algorithm (GA) is applied in this paper to optimize parameters of the extended Kalman filter (EKF) in a speed-senserless field-oriented controller (FOC) system. The main parameters of EKF are the covariance matrics Q and R, which are bound respectively to the state and measurement noises. As for speed-sensorless FOC system, the convergence and precision of both rotor speed and flux estimation depend on the accuracy of the models of system noise and measurement noise, i.e. Q and R. A GA training simulation system of optimum parameters of EKF is given and the simulation results show the efficiency and rationality of the algorithm.","PeriodicalId":236199,"journal":{"name":"IEEE 34th Annual Conference on Power Electronics Specialist, 2003. PESC '03.","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2003-06-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"14","resultStr":"{\"title\":\"Application of genetic algorithms in EKF for speed estimation of an induction motor\",\"authors\":\"Li Cai, Yinhai Zhang, Zhongchao Zhang, Chenyang Liu, Zheng-yu Lu\",\"doi\":\"10.1109/PESC.2003.1218317\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Genetic algorithm (GA) is applied in this paper to optimize parameters of the extended Kalman filter (EKF) in a speed-senserless field-oriented controller (FOC) system. The main parameters of EKF are the covariance matrics Q and R, which are bound respectively to the state and measurement noises. As for speed-sensorless FOC system, the convergence and precision of both rotor speed and flux estimation depend on the accuracy of the models of system noise and measurement noise, i.e. Q and R. A GA training simulation system of optimum parameters of EKF is given and the simulation results show the efficiency and rationality of the algorithm.\",\"PeriodicalId\":236199,\"journal\":{\"name\":\"IEEE 34th Annual Conference on Power Electronics Specialist, 2003. PESC '03.\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2003-06-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"14\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE 34th Annual Conference on Power Electronics Specialist, 2003. PESC '03.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/PESC.2003.1218317\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE 34th Annual Conference on Power Electronics Specialist, 2003. PESC '03.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PESC.2003.1218317","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 14

摘要

本文将遗传算法应用于无速度传感器场定向控制器(FOC)系统中扩展卡尔曼滤波器(EKF)的参数优化。EKF的主要参数是协方差矩阵Q和R,它们分别与状态噪声和测量噪声绑定。对于无速度传感器FOC系统,转子转速和磁链估计的收敛性和精度取决于系统噪声和测量噪声(Q和r)模型的准确性,给出了EKF最优参数的GA训练仿真系统,仿真结果表明了该算法的有效性和合理性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Application of genetic algorithms in EKF for speed estimation of an induction motor
Genetic algorithm (GA) is applied in this paper to optimize parameters of the extended Kalman filter (EKF) in a speed-senserless field-oriented controller (FOC) system. The main parameters of EKF are the covariance matrics Q and R, which are bound respectively to the state and measurement noises. As for speed-sensorless FOC system, the convergence and precision of both rotor speed and flux estimation depend on the accuracy of the models of system noise and measurement noise, i.e. Q and R. A GA training simulation system of optimum parameters of EKF is given and the simulation results show the efficiency and rationality of the algorithm.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信