深度学习

R. Kashyap
{"title":"深度学习","authors":"R. Kashyap","doi":"10.4018/978-1-5225-7955-7.CH006","DOIUrl":null,"url":null,"abstract":"The vast majority of the examination on profound neural systems so far has been centered on acquiring higher exactness levels by building progressively vast and profound structures. Preparing and assessing these models is just practical when a lot of assets; for example, handling power and memory are easy run of the mill applications that could profit by these models. The system starts handling the compelled gadget and depends on the remote part when the neighborhood part does not give a sufficiently precise outcome. The falling system takes into account a new ceasing component amid the review period of the system. This chapter empowers an entire assortment of independent frameworks where sensors, actuators, and registering hubs can cooperate and demonstrate that the falling design takes into account a free change in assessment speed on obliged gadgets while the misfortune in precision is kept to a base.","PeriodicalId":283602,"journal":{"name":"Computational Intelligence in the Internet of Things","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Deep Learning\",\"authors\":\"R. Kashyap\",\"doi\":\"10.4018/978-1-5225-7955-7.CH006\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The vast majority of the examination on profound neural systems so far has been centered on acquiring higher exactness levels by building progressively vast and profound structures. Preparing and assessing these models is just practical when a lot of assets; for example, handling power and memory are easy run of the mill applications that could profit by these models. The system starts handling the compelled gadget and depends on the remote part when the neighborhood part does not give a sufficiently precise outcome. The falling system takes into account a new ceasing component amid the review period of the system. This chapter empowers an entire assortment of independent frameworks where sensors, actuators, and registering hubs can cooperate and demonstrate that the falling design takes into account a free change in assessment speed on obliged gadgets while the misfortune in precision is kept to a base.\",\"PeriodicalId\":283602,\"journal\":{\"name\":\"Computational Intelligence in the Internet of Things\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computational Intelligence in the Internet of Things\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4018/978-1-5225-7955-7.CH006\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computational Intelligence in the Internet of Things","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4018/978-1-5225-7955-7.CH006","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

迄今为止,对深度神经系统的绝大多数研究都集中在通过逐步构建庞大而深刻的结构来获得更高的精度水平上。准备和评估这些模型只适用于很多资产;例如,处理功率和内存是易于运行的工厂应用程序,可以从这些模型中获利。当邻域部分没有给出足够精确的结果时,系统开始处理强制gadget并依赖于远程部分。下降系统在系统审查期间考虑了一个新的停止组件。本章授权了一整套独立框架,其中传感器,执行器和注册中心可以合作,并证明下降的设计考虑了义务设备的评估速度的自由变化,而精度的不幸保持在一个基础上。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Deep Learning
The vast majority of the examination on profound neural systems so far has been centered on acquiring higher exactness levels by building progressively vast and profound structures. Preparing and assessing these models is just practical when a lot of assets; for example, handling power and memory are easy run of the mill applications that could profit by these models. The system starts handling the compelled gadget and depends on the remote part when the neighborhood part does not give a sufficiently precise outcome. The falling system takes into account a new ceasing component amid the review period of the system. This chapter empowers an entire assortment of independent frameworks where sensors, actuators, and registering hubs can cooperate and demonstrate that the falling design takes into account a free change in assessment speed on obliged gadgets while the misfortune in precision is kept to a base.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信