利用测井资料进行储层预测——基于levenberg-marquardt方法的多井

E. Utami, A. D. Wibawa, T. R. Biyanto, M. Purnomo
{"title":"利用测井资料进行储层预测——基于levenberg-marquardt方法的多井","authors":"E. Utami, A. D. Wibawa, T. R. Biyanto, M. Purnomo","doi":"10.1109/ISCAIE.2017.8074962","DOIUrl":null,"url":null,"abstract":"Well logging is a well-known and effective method for oil and natural gas exploration in new fields in order to enhance oil and gas production. Well Logging is defined as an acquisition method to qualitatively and quantitatively evaluate the existence of hydrocarbon layer in the well. In this research, we studied the relations between well logging data and reservoir zone in Salawati basin, Irian Jaya area. Four well logs with four attributes such as Log Gamma Ray (GR), Log Resistivity (ILD), Log Density (RHOB), and Log Neutron (NPHI) were explored. The reservoir zone data has been previously determined by using log curve whether it is a reservoir zone or not. This data then is being used as a target for learning. Since the logging data is a complex and nonlinear, Levenberg-Marquardt (LM) was then implemented as an artificial intelligent algorithm in performing this study. The objective of this work is to build decision support system that will automatically find reservoir zone based on well logging data. The results of this work showed that Mean Absolute Percentage Error (MAPE) of training for reservoir zone prediction by exploiting Levenberg - Marquardt is 0.3803 % with 500 iteration. Validity test results based on ROC curve with cross validation folds 10 is 84.9984% and area of under ROC is 0.992. This result showed that this method has a high potential to be used in real exploration activities so that the predicting reservoir zone then can be done precisely.","PeriodicalId":298950,"journal":{"name":"2017 IEEE Symposium on Computer Applications & Industrial Electronics (ISCAIE)","volume":"29 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Reservoir zone prediction using logging data - multi well based on levenberg-marquardt method\",\"authors\":\"E. Utami, A. D. Wibawa, T. R. Biyanto, M. Purnomo\",\"doi\":\"10.1109/ISCAIE.2017.8074962\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Well logging is a well-known and effective method for oil and natural gas exploration in new fields in order to enhance oil and gas production. Well Logging is defined as an acquisition method to qualitatively and quantitatively evaluate the existence of hydrocarbon layer in the well. In this research, we studied the relations between well logging data and reservoir zone in Salawati basin, Irian Jaya area. Four well logs with four attributes such as Log Gamma Ray (GR), Log Resistivity (ILD), Log Density (RHOB), and Log Neutron (NPHI) were explored. The reservoir zone data has been previously determined by using log curve whether it is a reservoir zone or not. This data then is being used as a target for learning. Since the logging data is a complex and nonlinear, Levenberg-Marquardt (LM) was then implemented as an artificial intelligent algorithm in performing this study. The objective of this work is to build decision support system that will automatically find reservoir zone based on well logging data. The results of this work showed that Mean Absolute Percentage Error (MAPE) of training for reservoir zone prediction by exploiting Levenberg - Marquardt is 0.3803 % with 500 iteration. Validity test results based on ROC curve with cross validation folds 10 is 84.9984% and area of under ROC is 0.992. This result showed that this method has a high potential to be used in real exploration activities so that the predicting reservoir zone then can be done precisely.\",\"PeriodicalId\":298950,\"journal\":{\"name\":\"2017 IEEE Symposium on Computer Applications & Industrial Electronics (ISCAIE)\",\"volume\":\"29 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 IEEE Symposium on Computer Applications & Industrial Electronics (ISCAIE)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISCAIE.2017.8074962\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE Symposium on Computer Applications & Industrial Electronics (ISCAIE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISCAIE.2017.8074962","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

测井是在新油田进行油气勘探以提高油气产量的一种众所周知的有效方法。测井是一种定性和定量评价井中是否存在油气层的获取方法。本文研究了伊里安查亚地区萨拉瓦蒂盆地的测井资料与储层的关系。4口井的测井数据具有测井伽马(GR)、测井电阻率(ILD)、测井密度(RHOB)和测井中子(NPHI)等4种属性。以前的储层数据是通过测井曲线来确定是否为储层的。然后,这些数据被用作学习的目标。由于测井数据是复杂的非线性数据,因此将Levenberg-Marquardt (LM)算法作为人工智能算法进行研究。本工作的目的是建立基于测井数据自动发现储层的决策支持系统。研究结果表明,利用Levenberg - Marquardt方法进行储层预测训练,经过500次迭代,平均绝对百分比误差(MAPE)为0.3803%。交叉验证10次的ROC曲线效度检验结果为84.9984%,ROC下面积为0.992。结果表明,该方法在实际勘探活动中具有很高的应用潜力,可以准确地预测储层。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Reservoir zone prediction using logging data - multi well based on levenberg-marquardt method
Well logging is a well-known and effective method for oil and natural gas exploration in new fields in order to enhance oil and gas production. Well Logging is defined as an acquisition method to qualitatively and quantitatively evaluate the existence of hydrocarbon layer in the well. In this research, we studied the relations between well logging data and reservoir zone in Salawati basin, Irian Jaya area. Four well logs with four attributes such as Log Gamma Ray (GR), Log Resistivity (ILD), Log Density (RHOB), and Log Neutron (NPHI) were explored. The reservoir zone data has been previously determined by using log curve whether it is a reservoir zone or not. This data then is being used as a target for learning. Since the logging data is a complex and nonlinear, Levenberg-Marquardt (LM) was then implemented as an artificial intelligent algorithm in performing this study. The objective of this work is to build decision support system that will automatically find reservoir zone based on well logging data. The results of this work showed that Mean Absolute Percentage Error (MAPE) of training for reservoir zone prediction by exploiting Levenberg - Marquardt is 0.3803 % with 500 iteration. Validity test results based on ROC curve with cross validation folds 10 is 84.9984% and area of under ROC is 0.992. This result showed that this method has a high potential to be used in real exploration activities so that the predicting reservoir zone then can be done precisely.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信