线性二次型最优控制问题的隐式迭代算法

Meijun Liu, Xueyan Zhao
{"title":"线性二次型最优控制问题的隐式迭代算法","authors":"Meijun Liu, Xueyan Zhao","doi":"10.1109/YAC53711.2021.9486515","DOIUrl":null,"url":null,"abstract":"This paper investigates linear quadratic regulator(LQR) problem of linear stochastic systems. An novel algorithm is proposed to solve the general algebraic Riccati equation(GARE) derived from linear stochastic systems based on successive over-relaxation technique. With some initial conditions satisfied, the monotone convergence can be guaranteed, and an initial value selection method is proposed. Furthermore, a numerical example is given to demonstrate the effectiveness of the algorithm.","PeriodicalId":107254,"journal":{"name":"2021 36th Youth Academic Annual Conference of Chinese Association of Automation (YAC)","volume":"10 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-05-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An Implicit Iterative Algorithm for Linear Quadratic Optimal Control Problem\",\"authors\":\"Meijun Liu, Xueyan Zhao\",\"doi\":\"10.1109/YAC53711.2021.9486515\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper investigates linear quadratic regulator(LQR) problem of linear stochastic systems. An novel algorithm is proposed to solve the general algebraic Riccati equation(GARE) derived from linear stochastic systems based on successive over-relaxation technique. With some initial conditions satisfied, the monotone convergence can be guaranteed, and an initial value selection method is proposed. Furthermore, a numerical example is given to demonstrate the effectiveness of the algorithm.\",\"PeriodicalId\":107254,\"journal\":{\"name\":\"2021 36th Youth Academic Annual Conference of Chinese Association of Automation (YAC)\",\"volume\":\"10 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-05-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 36th Youth Academic Annual Conference of Chinese Association of Automation (YAC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/YAC53711.2021.9486515\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 36th Youth Academic Annual Conference of Chinese Association of Automation (YAC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/YAC53711.2021.9486515","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

研究了线性随机系统的线性二次型调节器问题。提出了一种基于逐次过松弛技术求解线性随机系统广义代数Riccati方程的新算法。在满足一定初始条件的情况下,保证了算法的单调收敛性,并提出了一种初始值选择方法。最后通过数值算例验证了该算法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
An Implicit Iterative Algorithm for Linear Quadratic Optimal Control Problem
This paper investigates linear quadratic regulator(LQR) problem of linear stochastic systems. An novel algorithm is proposed to solve the general algebraic Riccati equation(GARE) derived from linear stochastic systems based on successive over-relaxation technique. With some initial conditions satisfied, the monotone convergence can be guaranteed, and an initial value selection method is proposed. Furthermore, a numerical example is given to demonstrate the effectiveness of the algorithm.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信