UVA,可见光和近红外区域组织光学特性的起源

S. Jacques
{"title":"UVA,可见光和近红外区域组织光学特性的起源","authors":"S. Jacques","doi":"10.1364/aoipm.1996.opc364","DOIUrl":null,"url":null,"abstract":"This paper describes the relationship between the ultrastructure of biological tissues and the observed macroscopic optical scattering properties. A summary of the tissue absorption spectrum is also presented. The scattering of soft tissues (liver, prostate, etc.) and fibrous tissues such as dermis are considered. The scattering of soft tissues is attribued to membranous structures and modeled as Mie scattering from spheres in the 0.2-2-μm diameter range, where membrane lipids occupy about 1-20% of the cellular volume and the refractive index mismatch is 1.46/1.35. The scattering of dermis is modeled as scattering from collagen fiber bundles in the 2.8-μm diameter range occupying 21% of the dermal volume and the refractive index mismatch is 1.38/1.35. The effects of a component of small-scale particle scattering in the Rayleigh limit is also considered. The models are compared with tissue values from the literature for the reduced scattering coefficient, μs(1-g), and the anisotropy, g. The models roughly match the absolute value and wavelength dependence of scattering in the 300-1100 nm wavelength range.","PeriodicalId":368664,"journal":{"name":"Advances in Optical Imaging and Photon Migration","volume":"35 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"171","resultStr":"{\"title\":\"Origins of Tissue Optical Properties in the UVA, Visible, and NIR Regions\",\"authors\":\"S. Jacques\",\"doi\":\"10.1364/aoipm.1996.opc364\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper describes the relationship between the ultrastructure of biological tissues and the observed macroscopic optical scattering properties. A summary of the tissue absorption spectrum is also presented. The scattering of soft tissues (liver, prostate, etc.) and fibrous tissues such as dermis are considered. The scattering of soft tissues is attribued to membranous structures and modeled as Mie scattering from spheres in the 0.2-2-μm diameter range, where membrane lipids occupy about 1-20% of the cellular volume and the refractive index mismatch is 1.46/1.35. The scattering of dermis is modeled as scattering from collagen fiber bundles in the 2.8-μm diameter range occupying 21% of the dermal volume and the refractive index mismatch is 1.38/1.35. The effects of a component of small-scale particle scattering in the Rayleigh limit is also considered. The models are compared with tissue values from the literature for the reduced scattering coefficient, μs(1-g), and the anisotropy, g. The models roughly match the absolute value and wavelength dependence of scattering in the 300-1100 nm wavelength range.\",\"PeriodicalId\":368664,\"journal\":{\"name\":\"Advances in Optical Imaging and Photon Migration\",\"volume\":\"35 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"171\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advances in Optical Imaging and Photon Migration\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1364/aoipm.1996.opc364\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Optical Imaging and Photon Migration","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1364/aoipm.1996.opc364","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 171

摘要

本文描述了生物组织的超微结构与观测到的宏观光学散射特性之间的关系。对组织吸收光谱进行了综述。考虑了软组织(肝脏、前列腺等)和纤维组织(如真皮)的散射。在0.2-2- m直径范围内,膜脂约占细胞体积的1-20%,折射率失配为1.46/1.35。真皮的散射模型为胶原纤维束在2.8 μm直径范围内的散射,占真皮体积的21%,折射率失配为1.38/1.35。在瑞利极限下,还考虑了小尺度粒子散射分量的影响。模型的散射系数μs(1-g)和各向异性g与文献中的组织值进行了比较。模型在300 ~ 1100 nm波长范围内散射的绝对值和波长依赖性基本吻合。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Origins of Tissue Optical Properties in the UVA, Visible, and NIR Regions
This paper describes the relationship between the ultrastructure of biological tissues and the observed macroscopic optical scattering properties. A summary of the tissue absorption spectrum is also presented. The scattering of soft tissues (liver, prostate, etc.) and fibrous tissues such as dermis are considered. The scattering of soft tissues is attribued to membranous structures and modeled as Mie scattering from spheres in the 0.2-2-μm diameter range, where membrane lipids occupy about 1-20% of the cellular volume and the refractive index mismatch is 1.46/1.35. The scattering of dermis is modeled as scattering from collagen fiber bundles in the 2.8-μm diameter range occupying 21% of the dermal volume and the refractive index mismatch is 1.38/1.35. The effects of a component of small-scale particle scattering in the Rayleigh limit is also considered. The models are compared with tissue values from the literature for the reduced scattering coefficient, μs(1-g), and the anisotropy, g. The models roughly match the absolute value and wavelength dependence of scattering in the 300-1100 nm wavelength range.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信