网络可以自我检查:通过分布式、设备上的验证来扩展数据平面检查

Qiao Xiang, Ridi Wen, Che-Ling Huang, Yuxin Wang, Franck Le
{"title":"网络可以自我检查:通过分布式、设备上的验证来扩展数据平面检查","authors":"Qiao Xiang, Ridi Wen, Che-Ling Huang, Yuxin Wang, Franck Le","doi":"10.1145/3563766.3564095","DOIUrl":null,"url":null,"abstract":"Current data plane verification (DPV) tools employ a centralized architecture, where a server collects the data planes of all devices and verifies them. This architecture is inherently unscalable (i.e., requiring a reliable management network, incurring a long control path and making the server a single point of failure). In this paper, we tackle this scalability challenge of DPV from an architectural perspective. In particular, we circumvent the scalability bottleneck of centralized design and advocate for a distributed, on-device DPV framework. Our key insight is that DPV can be transformed into a counting problem on DAG, which can be naturally decomposed into lightweight tasks executed at network devices, enabling scalability. Evaluation shows that a prototype of this framework achieves scalable DPV under various settings, with little overhead on commodity network devices.","PeriodicalId":339381,"journal":{"name":"Proceedings of the 21st ACM Workshop on Hot Topics in Networks","volume":"30 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-11-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Network can check itself: scaling data plane checking via distributed, on-device verification\",\"authors\":\"Qiao Xiang, Ridi Wen, Che-Ling Huang, Yuxin Wang, Franck Le\",\"doi\":\"10.1145/3563766.3564095\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Current data plane verification (DPV) tools employ a centralized architecture, where a server collects the data planes of all devices and verifies them. This architecture is inherently unscalable (i.e., requiring a reliable management network, incurring a long control path and making the server a single point of failure). In this paper, we tackle this scalability challenge of DPV from an architectural perspective. In particular, we circumvent the scalability bottleneck of centralized design and advocate for a distributed, on-device DPV framework. Our key insight is that DPV can be transformed into a counting problem on DAG, which can be naturally decomposed into lightweight tasks executed at network devices, enabling scalability. Evaluation shows that a prototype of this framework achieves scalable DPV under various settings, with little overhead on commodity network devices.\",\"PeriodicalId\":339381,\"journal\":{\"name\":\"Proceedings of the 21st ACM Workshop on Hot Topics in Networks\",\"volume\":\"30 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-11-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 21st ACM Workshop on Hot Topics in Networks\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3563766.3564095\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 21st ACM Workshop on Hot Topics in Networks","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3563766.3564095","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

当前DPV (data plane verification)工具采用集中式架构,由一台服务器收集所有设备的数据平面并进行验证。这种架构本质上是不可扩展的(例如,需要一个可靠的管理网络,产生很长的控制路径,并使服务器成为单点故障)。在本文中,我们从体系结构的角度来解决DPV的可伸缩性挑战。特别是,我们绕过了集中式设计的可扩展性瓶颈,并倡导分布式设备上的DPV框架。我们的关键见解是,DPV可以转换为DAG上的计数问题,DAG可以自然地分解为在网络设备上执行的轻量级任务,从而实现可伸缩性。评估表明,该框架的原型在各种设置下实现了可扩展的DPV,在商用网络设备上的开销很小。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Network can check itself: scaling data plane checking via distributed, on-device verification
Current data plane verification (DPV) tools employ a centralized architecture, where a server collects the data planes of all devices and verifies them. This architecture is inherently unscalable (i.e., requiring a reliable management network, incurring a long control path and making the server a single point of failure). In this paper, we tackle this scalability challenge of DPV from an architectural perspective. In particular, we circumvent the scalability bottleneck of centralized design and advocate for a distributed, on-device DPV framework. Our key insight is that DPV can be transformed into a counting problem on DAG, which can be naturally decomposed into lightweight tasks executed at network devices, enabling scalability. Evaluation shows that a prototype of this framework achieves scalable DPV under various settings, with little overhead on commodity network devices.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信