基于pps -小波激活函数的前馈神经网络

J.F. Marar, E.C.D.B.C. Filho, G. C. Vasconcelos
{"title":"基于pps -小波激活函数的前馈神经网络","authors":"J.F. Marar, E.C.D.B.C. Filho, G. C. Vasconcelos","doi":"10.1109/CYBVIS.1996.629472","DOIUrl":null,"url":null,"abstract":"Function approximation is a very important task in environments where computation has to be based on extracting information from data samples in real world processes. Neural networks and wavenets have been seen as attractive tools for developing efficient solutions for many real world problems in function approximation. In this paper, it is shown how feedforward neural networks can be built using a different type of activation function referred to as the PPS (polynomial powers of sigmoids)-wavelet. An algorithm is presented to generate a family of PPS-wavelets that can be used to efficiently construct feedforward networks for function approximation.","PeriodicalId":103287,"journal":{"name":"Proceedings II Workshop on Cybernetic Vision","volume":"61 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1996-12-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Feedforward neural networks based on PPS-wavelet activation functions\",\"authors\":\"J.F. Marar, E.C.D.B.C. Filho, G. C. Vasconcelos\",\"doi\":\"10.1109/CYBVIS.1996.629472\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Function approximation is a very important task in environments where computation has to be based on extracting information from data samples in real world processes. Neural networks and wavenets have been seen as attractive tools for developing efficient solutions for many real world problems in function approximation. In this paper, it is shown how feedforward neural networks can be built using a different type of activation function referred to as the PPS (polynomial powers of sigmoids)-wavelet. An algorithm is presented to generate a family of PPS-wavelets that can be used to efficiently construct feedforward networks for function approximation.\",\"PeriodicalId\":103287,\"journal\":{\"name\":\"Proceedings II Workshop on Cybernetic Vision\",\"volume\":\"61 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1996-12-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings II Workshop on Cybernetic Vision\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CYBVIS.1996.629472\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings II Workshop on Cybernetic Vision","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CYBVIS.1996.629472","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

函数逼近是一项非常重要的任务,因为在现实世界的过程中,计算必须基于从数据样本中提取信息。神经网络和小波被认为是为函数逼近中许多现实世界问题开发有效解决方案的有吸引力的工具。在本文中,它显示了如何前馈神经网络可以建立使用不同类型的激活函数称为PPS(多项式幂的s型)-小波。提出了一种生成一组pps小波的算法,这些小波可以有效地构建用于函数逼近的前馈网络。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Feedforward neural networks based on PPS-wavelet activation functions
Function approximation is a very important task in environments where computation has to be based on extracting information from data samples in real world processes. Neural networks and wavenets have been seen as attractive tools for developing efficient solutions for many real world problems in function approximation. In this paper, it is shown how feedforward neural networks can be built using a different type of activation function referred to as the PPS (polynomial powers of sigmoids)-wavelet. An algorithm is presented to generate a family of PPS-wavelets that can be used to efficiently construct feedforward networks for function approximation.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信