使用隐私敏感音频数据进行群体性别识别

Jiaxing Shen, Oren Lederman, Jiannong Cao, Florian Berg, Shaojie Tang, A. Pentland
{"title":"使用隐私敏感音频数据进行群体性别识别","authors":"Jiaxing Shen, Oren Lederman, Jiannong Cao, Florian Berg, Shaojie Tang, A. Pentland","doi":"10.1109/ICDM.2018.00061","DOIUrl":null,"url":null,"abstract":"Group gender is essential in understanding social interaction and group dynamics. With the increasing privacy concerns of studying face-to-face communication in natural settings, many participants are not open to raw audio recording. Existing voice-based gender identification methods rely on acoustic characteristics caused by physiological differences and phonetic differences. However, these methods might become ineffective with privacy-sensitive audio for two main reasons. First, compared to raw audio, privacy-sensitive audio contains significantly fewer acoustic features. Moreover, natural settings generate various uncertainties in the audio data. In this paper, we make the first attempt to identify group gender using privacy-sensitive audio. Instead of extracting acoustic features from privacy-sensitive audio, we focus on conversational features including turn-taking behaviors and interruption patterns. However, conversational behaviors are unstable in gender identification as human behaviors are affected by many factors like emotion and environment. We utilize ensemble feature selection and a two-stage classification to improve the effectiveness and robustness of our approach. Ensemble feature selection could reduce the risk of choosing an unstable subset of features by aggregating the outputs of multiple feature selectors. In the first stage, we infer the gender composition (mixed-gender or same-gender) of a group which is used as an additional input feature for identifying group gender in the second stage. The estimated gender composition significantly improves the performance as it could partially account for the dynamics in conversational behaviors. According to the experimental evaluation of 100 people in 273 meetings, the proposed method outperforms baseline approaches and achieves an F1-score of 0.77 using linear SVM.","PeriodicalId":286444,"journal":{"name":"2018 IEEE International Conference on Data Mining (ICDM)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":"{\"title\":\"GINA: Group Gender Identification Using Privacy-Sensitive Audio Data\",\"authors\":\"Jiaxing Shen, Oren Lederman, Jiannong Cao, Florian Berg, Shaojie Tang, A. Pentland\",\"doi\":\"10.1109/ICDM.2018.00061\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Group gender is essential in understanding social interaction and group dynamics. With the increasing privacy concerns of studying face-to-face communication in natural settings, many participants are not open to raw audio recording. Existing voice-based gender identification methods rely on acoustic characteristics caused by physiological differences and phonetic differences. However, these methods might become ineffective with privacy-sensitive audio for two main reasons. First, compared to raw audio, privacy-sensitive audio contains significantly fewer acoustic features. Moreover, natural settings generate various uncertainties in the audio data. In this paper, we make the first attempt to identify group gender using privacy-sensitive audio. Instead of extracting acoustic features from privacy-sensitive audio, we focus on conversational features including turn-taking behaviors and interruption patterns. However, conversational behaviors are unstable in gender identification as human behaviors are affected by many factors like emotion and environment. We utilize ensemble feature selection and a two-stage classification to improve the effectiveness and robustness of our approach. Ensemble feature selection could reduce the risk of choosing an unstable subset of features by aggregating the outputs of multiple feature selectors. In the first stage, we infer the gender composition (mixed-gender or same-gender) of a group which is used as an additional input feature for identifying group gender in the second stage. The estimated gender composition significantly improves the performance as it could partially account for the dynamics in conversational behaviors. According to the experimental evaluation of 100 people in 273 meetings, the proposed method outperforms baseline approaches and achieves an F1-score of 0.77 using linear SVM.\",\"PeriodicalId\":286444,\"journal\":{\"name\":\"2018 IEEE International Conference on Data Mining (ICDM)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"10\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 IEEE International Conference on Data Mining (ICDM)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICDM.2018.00061\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE International Conference on Data Mining (ICDM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICDM.2018.00061","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10

摘要

群体性别对理解社会互动和群体动态至关重要。随着在自然环境中学习面对面交流的隐私问题日益增加,许多参与者对原始音频录音不开放。现有的基于语音的性别识别方法依赖于生理差异和语音差异引起的声学特征。然而,由于两个主要原因,这些方法可能对隐私敏感的音频无效。首先,与原始音频相比,隐私敏感音频包含的声学特征要少得多。此外,自然设置会在音频数据中产生各种不确定性。在本文中,我们首次尝试使用隐私敏感音频来识别群体性别。我们不是从隐私敏感音频中提取声学特征,而是关注会话特征,包括轮流行为和中断模式。然而,由于人类的行为受到情绪和环境等诸多因素的影响,会话行为在性别认同中是不稳定的。我们利用集成特征选择和两阶段分类来提高我们方法的有效性和鲁棒性。集成特征选择可以通过聚合多个特征选择器的输出来降低选择不稳定特征子集的风险。在第一阶段,我们推断一个群体的性别构成(混合性别或同性),作为第二阶段识别群体性别的额外输入特征。估计的性别构成显著提高了表现,因为它可以部分地解释会话行为的动态。根据273次会议中100人的实验评价,该方法优于基线方法,采用线性支持向量机的f1得分为0.77。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
GINA: Group Gender Identification Using Privacy-Sensitive Audio Data
Group gender is essential in understanding social interaction and group dynamics. With the increasing privacy concerns of studying face-to-face communication in natural settings, many participants are not open to raw audio recording. Existing voice-based gender identification methods rely on acoustic characteristics caused by physiological differences and phonetic differences. However, these methods might become ineffective with privacy-sensitive audio for two main reasons. First, compared to raw audio, privacy-sensitive audio contains significantly fewer acoustic features. Moreover, natural settings generate various uncertainties in the audio data. In this paper, we make the first attempt to identify group gender using privacy-sensitive audio. Instead of extracting acoustic features from privacy-sensitive audio, we focus on conversational features including turn-taking behaviors and interruption patterns. However, conversational behaviors are unstable in gender identification as human behaviors are affected by many factors like emotion and environment. We utilize ensemble feature selection and a two-stage classification to improve the effectiveness and robustness of our approach. Ensemble feature selection could reduce the risk of choosing an unstable subset of features by aggregating the outputs of multiple feature selectors. In the first stage, we infer the gender composition (mixed-gender or same-gender) of a group which is used as an additional input feature for identifying group gender in the second stage. The estimated gender composition significantly improves the performance as it could partially account for the dynamics in conversational behaviors. According to the experimental evaluation of 100 people in 273 meetings, the proposed method outperforms baseline approaches and achieves an F1-score of 0.77 using linear SVM.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信