一种新的基于能量统计复杂度的语音活动检测方法

Huan Zhao, Gangjin Wang, Xiujuan Peng
{"title":"一种新的基于能量统计复杂度的语音活动检测方法","authors":"Huan Zhao, Gangjin Wang, Xiujuan Peng","doi":"10.1109/BICTA.2010.5645091","DOIUrl":null,"url":null,"abstract":"In this paper, the nonlinear dynamic characteristics of the statistical complexity were applied to the voice activity detection (VAD). By combining it with the energy feature, we present a new VAD method that is energy statistics complexity (ESC) algorithm, using fuzzy c-Means clustering algorithm and Bayesian information criterion algorithm to estimate the thresholds of the ESC characteristic, and using dual threshold method for VAD. Experiments on the TIMIT continuous speech database show that at low SNR environments, ESC method is superior to the energy spectrum entropy (ESE) method. Especially in the vehicle noise and vehicle interior noise environments, ESC method shows better detection performance.","PeriodicalId":302619,"journal":{"name":"2010 IEEE Fifth International Conference on Bio-Inspired Computing: Theories and Applications (BIC-TA)","volume":"65 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-11-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"A novel voice activity detection method using energy statistical complexity\",\"authors\":\"Huan Zhao, Gangjin Wang, Xiujuan Peng\",\"doi\":\"10.1109/BICTA.2010.5645091\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, the nonlinear dynamic characteristics of the statistical complexity were applied to the voice activity detection (VAD). By combining it with the energy feature, we present a new VAD method that is energy statistics complexity (ESC) algorithm, using fuzzy c-Means clustering algorithm and Bayesian information criterion algorithm to estimate the thresholds of the ESC characteristic, and using dual threshold method for VAD. Experiments on the TIMIT continuous speech database show that at low SNR environments, ESC method is superior to the energy spectrum entropy (ESE) method. Especially in the vehicle noise and vehicle interior noise environments, ESC method shows better detection performance.\",\"PeriodicalId\":302619,\"journal\":{\"name\":\"2010 IEEE Fifth International Conference on Bio-Inspired Computing: Theories and Applications (BIC-TA)\",\"volume\":\"65 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-11-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2010 IEEE Fifth International Conference on Bio-Inspired Computing: Theories and Applications (BIC-TA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/BICTA.2010.5645091\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 IEEE Fifth International Conference on Bio-Inspired Computing: Theories and Applications (BIC-TA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/BICTA.2010.5645091","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

本文将统计复杂度的非线性动态特性应用到语音活动检测中。将其与能量特征相结合,提出了一种新的VAD方法——能量统计复杂度(ESC)算法,采用模糊c均值聚类算法和贝叶斯信息准则算法估计ESC特征的阈值,并采用双阈值法进行VAD。在TIMIT连续语音数据库上的实验表明,在低信噪比环境下,ESC方法优于能量谱熵(ESE)方法。特别是在车辆噪声和车内噪声环境下,ESC方法表现出较好的检测性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A novel voice activity detection method using energy statistical complexity
In this paper, the nonlinear dynamic characteristics of the statistical complexity were applied to the voice activity detection (VAD). By combining it with the energy feature, we present a new VAD method that is energy statistics complexity (ESC) algorithm, using fuzzy c-Means clustering algorithm and Bayesian information criterion algorithm to estimate the thresholds of the ESC characteristic, and using dual threshold method for VAD. Experiments on the TIMIT continuous speech database show that at low SNR environments, ESC method is superior to the energy spectrum entropy (ESE) method. Especially in the vehicle noise and vehicle interior noise environments, ESC method shows better detection performance.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信