分类包含图像的社区QA问题

Kenta Tamaki, Riku Togashi, Sosuke Kato, Sumio Fujita, Hideyuki Maeda, T. Sakai
{"title":"分类包含图像的社区QA问题","authors":"Kenta Tamaki, Riku Togashi, Sosuke Kato, Sumio Fujita, Hideyuki Maeda, T. Sakai","doi":"10.1145/3234944.3234948","DOIUrl":null,"url":null,"abstract":"We consider the problem of automatically assigning a category to a given question posted to a Community Question Answering (CQA) site, where the question contains not only text but also an image. For example, CQA users may post a photograph of a dress and ask the community \"Is this appropriate for a wedding?'' where the appropriate category for this question might be \"Manners, Ceremonial occasions.'' We tackle this problem using Convolutional Neural Networks with a DualNet architecture for combining the image and text representations. Our experiments with real data from Yahoo Chiebukuro and crowdsourced gold-standard categories show that the DualNet approach outperforms a text-only baseline ($p=.0000$), a sum-and-product baseline ($p=.0000$), Multimodal Compact Bilinear pooling ($p=.0000$), and a combination of sum-and-product and MCB ($p=.0000$), where the p-values are based on a randomised Tukey Honestly Significant Difference test with $B = 5000$ trials.","PeriodicalId":193631,"journal":{"name":"Proceedings of the 2018 ACM SIGIR International Conference on Theory of Information Retrieval","volume":"47 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Classifying Community QA Questions That Contain an Image\",\"authors\":\"Kenta Tamaki, Riku Togashi, Sosuke Kato, Sumio Fujita, Hideyuki Maeda, T. Sakai\",\"doi\":\"10.1145/3234944.3234948\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We consider the problem of automatically assigning a category to a given question posted to a Community Question Answering (CQA) site, where the question contains not only text but also an image. For example, CQA users may post a photograph of a dress and ask the community \\\"Is this appropriate for a wedding?'' where the appropriate category for this question might be \\\"Manners, Ceremonial occasions.'' We tackle this problem using Convolutional Neural Networks with a DualNet architecture for combining the image and text representations. Our experiments with real data from Yahoo Chiebukuro and crowdsourced gold-standard categories show that the DualNet approach outperforms a text-only baseline ($p=.0000$), a sum-and-product baseline ($p=.0000$), Multimodal Compact Bilinear pooling ($p=.0000$), and a combination of sum-and-product and MCB ($p=.0000$), where the p-values are based on a randomised Tukey Honestly Significant Difference test with $B = 5000$ trials.\",\"PeriodicalId\":193631,\"journal\":{\"name\":\"Proceedings of the 2018 ACM SIGIR International Conference on Theory of Information Retrieval\",\"volume\":\"47 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-09-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 2018 ACM SIGIR International Conference on Theory of Information Retrieval\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3234944.3234948\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2018 ACM SIGIR International Conference on Theory of Information Retrieval","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3234944.3234948","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

我们考虑对发布在社区问答(CQA)站点上的给定问题自动分配类别的问题,其中问题不仅包含文本还包含图像。例如,CQA用户可能会发布一条裙子的照片,并询问社区“这适合婚礼吗?”,这个问题的合适类别可能是“礼仪、礼仪场合”。“我们使用卷积神经网络和DualNet架构来解决这个问题,将图像和文本表示结合起来。我们对雅虎Chiebukuro和众包金标准类别的真实数据进行的实验表明,DualNet方法优于纯文本基线($p= 0.00000 $)、和积基线($p= 0.00000 $)、多模态紧凑双线性池($p= 0.00000 $)以及和积和MCB的组合($p= 0.00000 $),其中p值基于随机化的Tukey诚实显著差异测试,其中$B = 5000$试验。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Classifying Community QA Questions That Contain an Image
We consider the problem of automatically assigning a category to a given question posted to a Community Question Answering (CQA) site, where the question contains not only text but also an image. For example, CQA users may post a photograph of a dress and ask the community "Is this appropriate for a wedding?'' where the appropriate category for this question might be "Manners, Ceremonial occasions.'' We tackle this problem using Convolutional Neural Networks with a DualNet architecture for combining the image and text representations. Our experiments with real data from Yahoo Chiebukuro and crowdsourced gold-standard categories show that the DualNet approach outperforms a text-only baseline ($p=.0000$), a sum-and-product baseline ($p=.0000$), Multimodal Compact Bilinear pooling ($p=.0000$), and a combination of sum-and-product and MCB ($p=.0000$), where the p-values are based on a randomised Tukey Honestly Significant Difference test with $B = 5000$ trials.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信