{"title":"SOUPS:饱和算法的可变排序度量","authors":"Benjamin Smith, G. Ciardo","doi":"10.1109/ACSD.2018.000-4","DOIUrl":null,"url":null,"abstract":"Multivalued decision diagrams are an excellent technique to study the behavior of discrete-state systems such as Petri nets, but their variable order (mapping places to MDD levels) greatly affects efficiency, and finding an optimal order even just to encode a given set is NP-hard. In state-space generation, the situation is even worse, since the set of markings to be encoded keeps evolving and is known only at the end. Previous heuristics to improve the efficiency of the saturation algorithm often used in state-space generation seek a variable order minimizing a simple function of the Petri net, such as the sum over each transition of the top variable position (SOT) or variable span (SOS). This, too, is NP-hard, so we cannot compute orders that minimize SOT or SOS in most cases but, even if we could, it would have limited effectiveness. For example, SOT and SOS can be led astray by multiple copies of a transition (giving more weight to it), or transitions with equal inputs and outputs (giving weight to transitions that should be ignored). These anomalies inspired us to define SOUPS, a new heuristic that only takes into account the unique and productive portion of each transition. The SOUPS metric can be easily computed, allowing us to use it in standard search techniques like simulated annealing to find good orders. Experiments show that SOUPS is a much better proxy for the quantities we really hope to improve, the memory and time for MDD manipulation during state-space generation.","PeriodicalId":242721,"journal":{"name":"2018 18th International Conference on Application of Concurrency to System Design (ACSD)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":"{\"title\":\"SOUPS: A Variable Ordering Metric for the Saturation Algorithm\",\"authors\":\"Benjamin Smith, G. Ciardo\",\"doi\":\"10.1109/ACSD.2018.000-4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Multivalued decision diagrams are an excellent technique to study the behavior of discrete-state systems such as Petri nets, but their variable order (mapping places to MDD levels) greatly affects efficiency, and finding an optimal order even just to encode a given set is NP-hard. In state-space generation, the situation is even worse, since the set of markings to be encoded keeps evolving and is known only at the end. Previous heuristics to improve the efficiency of the saturation algorithm often used in state-space generation seek a variable order minimizing a simple function of the Petri net, such as the sum over each transition of the top variable position (SOT) or variable span (SOS). This, too, is NP-hard, so we cannot compute orders that minimize SOT or SOS in most cases but, even if we could, it would have limited effectiveness. For example, SOT and SOS can be led astray by multiple copies of a transition (giving more weight to it), or transitions with equal inputs and outputs (giving weight to transitions that should be ignored). These anomalies inspired us to define SOUPS, a new heuristic that only takes into account the unique and productive portion of each transition. The SOUPS metric can be easily computed, allowing us to use it in standard search techniques like simulated annealing to find good orders. Experiments show that SOUPS is a much better proxy for the quantities we really hope to improve, the memory and time for MDD manipulation during state-space generation.\",\"PeriodicalId\":242721,\"journal\":{\"name\":\"2018 18th International Conference on Application of Concurrency to System Design (ACSD)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"10\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 18th International Conference on Application of Concurrency to System Design (ACSD)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ACSD.2018.000-4\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 18th International Conference on Application of Concurrency to System Design (ACSD)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ACSD.2018.000-4","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
SOUPS: A Variable Ordering Metric for the Saturation Algorithm
Multivalued decision diagrams are an excellent technique to study the behavior of discrete-state systems such as Petri nets, but their variable order (mapping places to MDD levels) greatly affects efficiency, and finding an optimal order even just to encode a given set is NP-hard. In state-space generation, the situation is even worse, since the set of markings to be encoded keeps evolving and is known only at the end. Previous heuristics to improve the efficiency of the saturation algorithm often used in state-space generation seek a variable order minimizing a simple function of the Petri net, such as the sum over each transition of the top variable position (SOT) or variable span (SOS). This, too, is NP-hard, so we cannot compute orders that minimize SOT or SOS in most cases but, even if we could, it would have limited effectiveness. For example, SOT and SOS can be led astray by multiple copies of a transition (giving more weight to it), or transitions with equal inputs and outputs (giving weight to transitions that should be ignored). These anomalies inspired us to define SOUPS, a new heuristic that only takes into account the unique and productive portion of each transition. The SOUPS metric can be easily computed, allowing us to use it in standard search techniques like simulated annealing to find good orders. Experiments show that SOUPS is a much better proxy for the quantities we really hope to improve, the memory and time for MDD manipulation during state-space generation.