SOUPS:饱和算法的可变排序度量

Benjamin Smith, G. Ciardo
{"title":"SOUPS:饱和算法的可变排序度量","authors":"Benjamin Smith, G. Ciardo","doi":"10.1109/ACSD.2018.000-4","DOIUrl":null,"url":null,"abstract":"Multivalued decision diagrams are an excellent technique to study the behavior of discrete-state systems such as Petri nets, but their variable order (mapping places to MDD levels) greatly affects efficiency, and finding an optimal order even just to encode a given set is NP-hard. In state-space generation, the situation is even worse, since the set of markings to be encoded keeps evolving and is known only at the end. Previous heuristics to improve the efficiency of the saturation algorithm often used in state-space generation seek a variable order minimizing a simple function of the Petri net, such as the sum over each transition of the top variable position (SOT) or variable span (SOS). This, too, is NP-hard, so we cannot compute orders that minimize SOT or SOS in most cases but, even if we could, it would have limited effectiveness. For example, SOT and SOS can be led astray by multiple copies of a transition (giving more weight to it), or transitions with equal inputs and outputs (giving weight to transitions that should be ignored). These anomalies inspired us to define SOUPS, a new heuristic that only takes into account the unique and productive portion of each transition. The SOUPS metric can be easily computed, allowing us to use it in standard search techniques like simulated annealing to find good orders. Experiments show that SOUPS is a much better proxy for the quantities we really hope to improve, the memory and time for MDD manipulation during state-space generation.","PeriodicalId":242721,"journal":{"name":"2018 18th International Conference on Application of Concurrency to System Design (ACSD)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":"{\"title\":\"SOUPS: A Variable Ordering Metric for the Saturation Algorithm\",\"authors\":\"Benjamin Smith, G. Ciardo\",\"doi\":\"10.1109/ACSD.2018.000-4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Multivalued decision diagrams are an excellent technique to study the behavior of discrete-state systems such as Petri nets, but their variable order (mapping places to MDD levels) greatly affects efficiency, and finding an optimal order even just to encode a given set is NP-hard. In state-space generation, the situation is even worse, since the set of markings to be encoded keeps evolving and is known only at the end. Previous heuristics to improve the efficiency of the saturation algorithm often used in state-space generation seek a variable order minimizing a simple function of the Petri net, such as the sum over each transition of the top variable position (SOT) or variable span (SOS). This, too, is NP-hard, so we cannot compute orders that minimize SOT or SOS in most cases but, even if we could, it would have limited effectiveness. For example, SOT and SOS can be led astray by multiple copies of a transition (giving more weight to it), or transitions with equal inputs and outputs (giving weight to transitions that should be ignored). These anomalies inspired us to define SOUPS, a new heuristic that only takes into account the unique and productive portion of each transition. The SOUPS metric can be easily computed, allowing us to use it in standard search techniques like simulated annealing to find good orders. Experiments show that SOUPS is a much better proxy for the quantities we really hope to improve, the memory and time for MDD manipulation during state-space generation.\",\"PeriodicalId\":242721,\"journal\":{\"name\":\"2018 18th International Conference on Application of Concurrency to System Design (ACSD)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"10\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 18th International Conference on Application of Concurrency to System Design (ACSD)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ACSD.2018.000-4\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 18th International Conference on Application of Concurrency to System Design (ACSD)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ACSD.2018.000-4","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10

摘要

多值决策图是研究离散状态系统(如Petri网)行为的一种优秀技术,但是它们的可变顺序(将位置映射到MDD级别)极大地影响了效率,并且即使只是对给定集合进行编码,也很难找到最优顺序。在状态空间生成中,情况甚至更糟,因为要编码的标记集一直在演变,只有在最后才知道。以往用于状态空间生成的饱和算法为了提高效率,通常寻求一个变量阶最小化Petri网的一个简单函数,如顶部可变位置(SOT)或可变跨度(SOS)的每次过渡之和。这也是np困难的,所以我们不能在大多数情况下计算最小化SOT或SOS的顺序,但是,即使我们可以,它的有效性也有限。例如,SOT和SOS可能被转换的多个副本(赋予它更多的权重)或具有相同输入和输出的转换(赋予应该忽略的转换权重)引入歧途。这些异常现象启发我们定义了soup,这是一种新的启发式方法,只考虑了每个转换的独特和富有成效的部分。SOUPS度量可以很容易地计算,允许我们在模拟退火等标准搜索技术中使用它来找到好的订单。实验表明,对于我们真正希望改进的数量,在状态空间生成过程中用于MDD操作的内存和时间,soup是一个更好的代理。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
SOUPS: A Variable Ordering Metric for the Saturation Algorithm
Multivalued decision diagrams are an excellent technique to study the behavior of discrete-state systems such as Petri nets, but their variable order (mapping places to MDD levels) greatly affects efficiency, and finding an optimal order even just to encode a given set is NP-hard. In state-space generation, the situation is even worse, since the set of markings to be encoded keeps evolving and is known only at the end. Previous heuristics to improve the efficiency of the saturation algorithm often used in state-space generation seek a variable order minimizing a simple function of the Petri net, such as the sum over each transition of the top variable position (SOT) or variable span (SOS). This, too, is NP-hard, so we cannot compute orders that minimize SOT or SOS in most cases but, even if we could, it would have limited effectiveness. For example, SOT and SOS can be led astray by multiple copies of a transition (giving more weight to it), or transitions with equal inputs and outputs (giving weight to transitions that should be ignored). These anomalies inspired us to define SOUPS, a new heuristic that only takes into account the unique and productive portion of each transition. The SOUPS metric can be easily computed, allowing us to use it in standard search techniques like simulated annealing to find good orders. Experiments show that SOUPS is a much better proxy for the quantities we really hope to improve, the memory and time for MDD manipulation during state-space generation.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信