论人口规模的计算

P. Berenbrink, Dominik Kaaser, T. Radzik
{"title":"论人口规模的计算","authors":"P. Berenbrink, Dominik Kaaser, T. Radzik","doi":"10.1145/3293611.3331631","DOIUrl":null,"url":null,"abstract":"We consider the problem of counting the population size in the population model. In this model, we are given a distributed system of n identical agents which interact in pairs with the goal to solve a common task. In each time step, the two interacting agents are selected uniformly at random. In this paper, we consider so-called uniform protocols, where the actions of two agents upon an interaction may not depend on the population size n. We present two population protocols to count the size of the population: protocol Approximate, which computes with high probability either [log n] or [log n], and protocol CountExact, which computes the exact population size in optimal O(log n) interactions, using Õ (n) states. Both protocols can also be converted to stable protocols that give a correct result with probability 1 by using an additional multiplicative factor of O(log n) states.","PeriodicalId":153766,"journal":{"name":"Proceedings of the 2019 ACM Symposium on Principles of Distributed Computing","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-05-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"14","resultStr":"{\"title\":\"On Counting the Population Size\",\"authors\":\"P. Berenbrink, Dominik Kaaser, T. Radzik\",\"doi\":\"10.1145/3293611.3331631\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We consider the problem of counting the population size in the population model. In this model, we are given a distributed system of n identical agents which interact in pairs with the goal to solve a common task. In each time step, the two interacting agents are selected uniformly at random. In this paper, we consider so-called uniform protocols, where the actions of two agents upon an interaction may not depend on the population size n. We present two population protocols to count the size of the population: protocol Approximate, which computes with high probability either [log n] or [log n], and protocol CountExact, which computes the exact population size in optimal O(log n) interactions, using Õ (n) states. Both protocols can also be converted to stable protocols that give a correct result with probability 1 by using an additional multiplicative factor of O(log n) states.\",\"PeriodicalId\":153766,\"journal\":{\"name\":\"Proceedings of the 2019 ACM Symposium on Principles of Distributed Computing\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-05-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"14\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 2019 ACM Symposium on Principles of Distributed Computing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3293611.3331631\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2019 ACM Symposium on Principles of Distributed Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3293611.3331631","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 14

摘要

我们考虑人口模型中人口规模的计算问题。在该模型中,我们给出了一个由n个相同的智能体组成的分布式系统,这些智能体成对地相互作用,以解决一个共同的任务。在每个时间步长中,均匀随机选择两个相互作用的智能体。在本文中,我们考虑了所谓的统一协议,其中两个智能体在交互时的动作可能不依赖于种群大小n。我们提出了两个种群协议来计算种群的大小:协议Approximate,它以[log n]或[log n]的高概率计算,协议CountExact,它在最优的O(log n)交互中计算精确的种群大小,使用Õ (n)状态。这两个协议也可以转换为稳定的协议,通过使用O(log n)个状态的附加乘法因子,以1的概率给出正确的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On Counting the Population Size
We consider the problem of counting the population size in the population model. In this model, we are given a distributed system of n identical agents which interact in pairs with the goal to solve a common task. In each time step, the two interacting agents are selected uniformly at random. In this paper, we consider so-called uniform protocols, where the actions of two agents upon an interaction may not depend on the population size n. We present two population protocols to count the size of the population: protocol Approximate, which computes with high probability either [log n] or [log n], and protocol CountExact, which computes the exact population size in optimal O(log n) interactions, using Õ (n) states. Both protocols can also be converted to stable protocols that give a correct result with probability 1 by using an additional multiplicative factor of O(log n) states.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信