{"title":"采用切比雪夫谱离散化方法进行高精度状态和参数估计","authors":"R. Zivanovic","doi":"10.1109/MED.2010.5547709","DOIUrl":null,"url":null,"abstract":"In this paper, we propose an algorithm for state and parameter estimation of nonlinear dynamical systems. In a usual manner, estimation is obtained by solving iteratively a sequence of linear least squares problems with equality constraints. Formulation of the least squares problem is based on Chebyshev spectral discretization. Chebyshev grid resolution is determined automatically to maximize computation accuracy. The key quality of the algorithm lies in the use of the barycentric interpolation formula when solving the least squares problem with various grid resolutions. High-accuracy of the proposed estimation method is contributed to this interpolation formula that is found to be numerically stable and computationally effective. Two numerical examples are presented to demonstrate accuracy of the proposed algorithm.","PeriodicalId":149864,"journal":{"name":"18th Mediterranean Conference on Control and Automation, MED'10","volume":"29 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-06-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"High-accuracy state and parameter estimation using Chebyshev spectral discretization method\",\"authors\":\"R. Zivanovic\",\"doi\":\"10.1109/MED.2010.5547709\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we propose an algorithm for state and parameter estimation of nonlinear dynamical systems. In a usual manner, estimation is obtained by solving iteratively a sequence of linear least squares problems with equality constraints. Formulation of the least squares problem is based on Chebyshev spectral discretization. Chebyshev grid resolution is determined automatically to maximize computation accuracy. The key quality of the algorithm lies in the use of the barycentric interpolation formula when solving the least squares problem with various grid resolutions. High-accuracy of the proposed estimation method is contributed to this interpolation formula that is found to be numerically stable and computationally effective. Two numerical examples are presented to demonstrate accuracy of the proposed algorithm.\",\"PeriodicalId\":149864,\"journal\":{\"name\":\"18th Mediterranean Conference on Control and Automation, MED'10\",\"volume\":\"29 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-06-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"18th Mediterranean Conference on Control and Automation, MED'10\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/MED.2010.5547709\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"18th Mediterranean Conference on Control and Automation, MED'10","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MED.2010.5547709","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
High-accuracy state and parameter estimation using Chebyshev spectral discretization method
In this paper, we propose an algorithm for state and parameter estimation of nonlinear dynamical systems. In a usual manner, estimation is obtained by solving iteratively a sequence of linear least squares problems with equality constraints. Formulation of the least squares problem is based on Chebyshev spectral discretization. Chebyshev grid resolution is determined automatically to maximize computation accuracy. The key quality of the algorithm lies in the use of the barycentric interpolation formula when solving the least squares problem with various grid resolutions. High-accuracy of the proposed estimation method is contributed to this interpolation formula that is found to be numerically stable and computationally effective. Two numerical examples are presented to demonstrate accuracy of the proposed algorithm.