采用切比雪夫谱离散化方法进行高精度状态和参数估计

R. Zivanovic
{"title":"采用切比雪夫谱离散化方法进行高精度状态和参数估计","authors":"R. Zivanovic","doi":"10.1109/MED.2010.5547709","DOIUrl":null,"url":null,"abstract":"In this paper, we propose an algorithm for state and parameter estimation of nonlinear dynamical systems. In a usual manner, estimation is obtained by solving iteratively a sequence of linear least squares problems with equality constraints. Formulation of the least squares problem is based on Chebyshev spectral discretization. Chebyshev grid resolution is determined automatically to maximize computation accuracy. The key quality of the algorithm lies in the use of the barycentric interpolation formula when solving the least squares problem with various grid resolutions. High-accuracy of the proposed estimation method is contributed to this interpolation formula that is found to be numerically stable and computationally effective. Two numerical examples are presented to demonstrate accuracy of the proposed algorithm.","PeriodicalId":149864,"journal":{"name":"18th Mediterranean Conference on Control and Automation, MED'10","volume":"29 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-06-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"High-accuracy state and parameter estimation using Chebyshev spectral discretization method\",\"authors\":\"R. Zivanovic\",\"doi\":\"10.1109/MED.2010.5547709\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we propose an algorithm for state and parameter estimation of nonlinear dynamical systems. In a usual manner, estimation is obtained by solving iteratively a sequence of linear least squares problems with equality constraints. Formulation of the least squares problem is based on Chebyshev spectral discretization. Chebyshev grid resolution is determined automatically to maximize computation accuracy. The key quality of the algorithm lies in the use of the barycentric interpolation formula when solving the least squares problem with various grid resolutions. High-accuracy of the proposed estimation method is contributed to this interpolation formula that is found to be numerically stable and computationally effective. Two numerical examples are presented to demonstrate accuracy of the proposed algorithm.\",\"PeriodicalId\":149864,\"journal\":{\"name\":\"18th Mediterranean Conference on Control and Automation, MED'10\",\"volume\":\"29 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-06-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"18th Mediterranean Conference on Control and Automation, MED'10\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/MED.2010.5547709\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"18th Mediterranean Conference on Control and Automation, MED'10","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MED.2010.5547709","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

本文提出了一种非线性动力系统的状态和参数估计算法。通常,估计是通过迭代求解一系列具有等式约束的线性最小二乘问题得到的。最小二乘问题是基于切比雪夫谱离散化的。切比雪夫网格分辨率自动确定,以最大限度地提高计算精度。该算法的关键在于在求解各种网格分辨率的最小二乘问题时,采用了质心插值公式。该插值公式数值稳定,计算有效,具有较高的估计精度。通过两个算例验证了算法的准确性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
High-accuracy state and parameter estimation using Chebyshev spectral discretization method
In this paper, we propose an algorithm for state and parameter estimation of nonlinear dynamical systems. In a usual manner, estimation is obtained by solving iteratively a sequence of linear least squares problems with equality constraints. Formulation of the least squares problem is based on Chebyshev spectral discretization. Chebyshev grid resolution is determined automatically to maximize computation accuracy. The key quality of the algorithm lies in the use of the barycentric interpolation formula when solving the least squares problem with various grid resolutions. High-accuracy of the proposed estimation method is contributed to this interpolation formula that is found to be numerically stable and computationally effective. Two numerical examples are presented to demonstrate accuracy of the proposed algorithm.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信